Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-05T13:23:02.575Z Has data issue: false hasContentIssue false

A Generalized Strange Term in Signorini's Type Problems

Published online by Cambridge University Press:  15 November 2003

Carlos Conca
Affiliation:
Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMR 2071 CNRS-UChile, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 170/3, Santiago, Chile. cconca@dim.uchile.cl.
François Murat
Affiliation:
Laboratoire Jacques-Louis Lions, Université Paris VI, Boîte courrier 187, 75252 Paris Cedex 05, France. murat@ann.jussieu.fr.
Claudia Timofte
Affiliation:
Department of Mathematics, Faculty of Physics, University of Bucharest, PO Box MG-11, Bucharest-Magurele, Romania. claudiatimofte@hotmail.com.
Get access

Abstract

The limit behavior of the solutions of Signorini's type-likeproblems in periodically perforated domains with periodε is studied. The main feature of this limit behaviour isthe existence of a critical size of the perforations thatseparates different emerging phenomena as ε → 0. In the critical case, it is shown that Signorini's problemconverges to a problem associated to a new operator whichis the sum of a standard homogenized operator and an extra zeroorder term (“strange term”) coming from the geometry; itsappearance is due to the special size of the holes. The limitproblem captures the two sources of oscillations involved in thiskind of free boundary-value problems, namely, those arising fromthe size of the holes and those due to the periodic inhomogeneityof the medium. The main ingredient of the method used in the proofis an explicit construction of suitable test functions whichprovide a good understanding of the interactions between the abovementioned sources of oscillations.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansini, N. and Braides, A., Asymptotic analysis of periodically perforated non-linear media. J. Math. Pures Appl. 81 (2002) 439-451. CrossRef
H. Attouch, Variational Convergence for Functions and Operators. Pitman, London (1984).
A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998).
Brézis, H., Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972) 1-168.
Calvo Jurado, C. and Casado Díaz, J., The limit of Dirichlet systems for variable monotone operators in general perforated domains. J. Math. Pures Appl. 81 (2002) 471-493. CrossRef
Casado Díaz, J., Existence of a sequence satisfying Cioranescu-Murat conditions in homogenization of Dirichlet problems in perforated domains. Rend. Mat. Appl. 16 (1996) 387-413.
Casado-Díaz, J., Homogenization of Dirichlet problems for monotone operators in varying domains. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 457-478. CrossRef
Cioranescu, D. and Saint Jean Paulin, J., Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590-607. CrossRef
D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs, I and II, in Nonlinear Differential Equations and Their Applications, Collège de France Seminar, H. Brézis and J.L. Lions, Eds., Vol. II, pp. 98-138, Vol. III, pp. 154-178. Pitman, London, Research Notes in Mathematics 60 and 70 (1982 and 1983). English translation: A Strange Term Coming from Nowhere, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Kohn, Eds. Birkhäuser, Boston, Progr. Nonlinear Differential Equations Appl. 31 (1997) 45-93.
Conca, C. and Donato, P., Non homogeneous Neumann problems in domains with small holes. RAIRO Modél. Math. Anal. Numér. 22 (1988) 561-607. CrossRef
Conca, C. and Vanninathan, M., On uniform H 2-estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh A 131 (2001) 499-517. CrossRef
Dal Maso, G., On the integral representation of certain local functionals. Ricerche Mat. 32 (1983) 85-113.
Dal Maso, G., Γ-convergence and µ-capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987) 423-464.
G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston, Progr. Nonlinear Differential Equations Appl. 8 (1993).
Dal Maso, G. and Garroni, A., New results on the asymptotic behavior of Dirichlet problems in perforated domains. Math. Models Methods Appl. Sci. 4 (1994) 373-407. CrossRef
Dal Maso, G. and Murat, F., Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 24 (1997) 239-290.
G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré, Anal. non linéaire (to appear).
De Giorgi, E. and Franzoni, T., Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Mat. Fis. Natur. 58 (1975) 842-850.
G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei, Serie 8 7 (1964) 91-140.
Kovalevsky, A., An effect of double homogenization for Dirichlet problems in variable domains of general structure. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1151-1156. CrossRef
Lions, J.L. and Stampacchia, G., Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493-519. CrossRef
V.A. Marcenko and E.Ja. Hrouslov, Boundary Value Problems in Domains with Fine-Grained Boundary (in russian). Naukova Dumka, Kiev (1974).
F. Murat, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'université d'Alger 1977-1978, multigraphied, 34 p. English translation: F. Murat and L. Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Khon, Eds. Birkhäuser, Boston, Progr. Nonlinear Differential Equations Appl. 31 (1997) 21-43.
A. Signorini, Sopra alcune questioni di Elastostatica. Atti della Soc. Ital. per il Progresso della Scienze (1963).
I.V. Skrypnik, Nonlinear Elliptic Boundary Value Problems. Teubner-Verlag, Leipzig (1986).
L. Tartar, Problèmes d'homogénéisation dans les équations aux dérivées partielles. Cours Peccot, Collège de France (1977) (Partially written in []).
L. Tartar, Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proceedings of the Japan-France Seminar 1976, H. Fujita, Ed. Japan Society for the Promotion of Science, Tokyo (1978) 469-482.