Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T02:27:59.820Z Has data issue: false hasContentIssue false

C++ Tools to construct our user-level language

Published online by Cambridge University Press:  15 October 2002

Frédéric Hecht*
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France.
Get access


The aim of this paper is to present how to make a dedicaded computed language polymorphic and multi type, in C++ to solve partial differential equations with the finite element method. The driving idea is to make the language as close as possible to the mathematical notation.

Research Article
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


D. Bernardi, F. Hecht, K. Ohtsuka and O. Pironneau, freefem+ documentation.
P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1991) 17-351.
C. Donnelly and R. Stallman, Bison documentation.
P. Frey and P.L. George, Automatic triangulation. Wiley (1996).
F. Hecht, The mesh adapting software: bamg. INRIA (1998).
F. Hecht and O. Pironneau, freefem++ Manual.
P. Joly and M. Vidrascu, Quelques méthodes classique de résolution de systèmes linèaires. Collection didactique, INRIA (1994).
Lions, J.L. and Pironneau, O., Domain decomposition methods for CAD. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 73-80. CrossRef
B. Lucquin and O. Pironneau, Scientific Computing for Engineers. Wiley (1998).
O. Pironneau, Méthodes des éléments finis pour les fluides. Masson (1988).
N. Wirth, Algorthims + Data Structures = Programs. Prentice Hall (1976).