Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-9v52d Total loading time: 0.25 Render date: 2021-10-25T10:42:47.256Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Asymptotic models for scattering from unbounded media with high conductivity

Published online by Cambridge University Press:  15 April 2010

Houssem Haddar
Affiliation:
INRIA Saclay Île-de-France/École Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France. haddar@cmap.polytechnique.fr; alechle@cmap.polytechnique.fr
Armin Lechleiter
Affiliation:
INRIA Saclay Île-de-France/École Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France. haddar@cmap.polytechnique.fr; alechle@cmap.polytechnique.fr
Get access

Abstract

We analyze the accuracy and well-posedness of generalized impedance boundary value problems in the framework of scattering problems from unbounded highly absorbing media. We restrict ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties in the analysis for the generalized impedance boundary conditions, since classical compactness arguments are no longer possible. Our new analysis is based on the use of Rellich-type estimates and boundedness of L2 solution operators. We also discuss some numerical experiments concerning these boundary conditions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artola, M. and Cessenat, M., Diffraction d'une onde électromagnétique par un obstacle borné à permittivité et perméabilité élevées. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 349354.
Chandler-Wilde, S.N. and Monk, P., Existence, uniqueness, and variational methods for scattering by unbounded rough surfaces. SIAM. J. Math. Anal. 37 (2005) 598618. CrossRef
Chandler-Wilde, S.N. and Monk, P., The pml for rough surface scattering. Appl. Numer. Math. 59 (2009) 21312154. CrossRef
Chandler-Wilde, S.N. and Ross, C.R., Scattering by rough surfaces: the Dirichlet problem for the Helmholtz equation in a non-locally perturbed half-plane. Math. Meth. Appl. Sci. 19 (1996) 959976. 3.0.CO;2-R>CrossRef
Chandler-Wilde, S.N., Heinemeyer, E. and Potthast, R., Acoustic scattering by mildly rough surfaces in three dimensions. SIAM J. Appl. Math. 66 (2006) 10021026. CrossRef
Chandler-Wilde, S.N., Monk, P. and Thomas, M., The mathematics of scattering by unbounded, rough, inhomogeneous layers. J. Comput. Appl. Math. 204 (2007) 549559. CrossRef
Cummings, P. and Feng, X., Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Mod. Meth. Appl. Sci. 16 (2006) 139160. CrossRef
Duruflé, M., Haddar, H. and Joly, P., Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C. R. Phys. 7 (2006) 533542. CrossRef
Haddar, H., Joly, P. and Nguyen, H.-M., Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Mod. Meth. Appl. Sci. 15 (2005) 12731300. CrossRef
F. Ihlenburg, Finite element analysis of acoustic scattering. Springer (1998).
A. Lechleiter and S. Ritterbusch, A variational method for wave scattering from penetrable rough layers. IMA J. Appl. Math. (2009) doi:10.1093/imamat/hxp040.
W. McLean, Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge (2000).
J.C. Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences 144. Springer-Verlag, Berlin (2001).
Rytov, S.M., Calcul du skin-effet par la méthode des perturbations. J. Phys. USSR 2 (1940) 233242.
T.B.A. Senior and J.L. Volakis, Approximate boundary conditions in electromagnetics, IEE Electromagnetic waves series 41. The institution of Electrical Engineers, London (1995).
Zhang, B. and Chandler-Wilde, S.N., Integral equation methods for scattering by infinite rough surfaces. Math. Meth. Appl. Sci. 26 (2003) 463488. CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Asymptotic models for scattering from unbounded media with high conductivity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Asymptotic models for scattering from unbounded media with high conductivity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Asymptotic models for scattering from unbounded media with high conductivity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *