Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T15:46:39.423Z Has data issue: false hasContentIssue false

Homogenization and localization in locally periodic transport

Published online by Cambridge University Press:  15 August 2002

Grégoire Allaire
Affiliation:
Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau Cedex, France, and CEA Saclay, DEN/DM2S, 91191 Gif-sur-Yvette, France; gregoire.allaire@polytechnique.fr.
Guillaume Bal
Affiliation:
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA; gb2030@columbia.edu.
Vincent Siess
Affiliation:
CEA Saclay, DEN/DM2S, 91191 Gif-sur-Yvette, France; siess@soleil.serma.cea.fr.
Get access

Abstract

In this paper, we study the homogenization and localization of a spectral transport equation posed in a locally periodic heterogeneous domain. This equation models the equilibrium of particles interacting with an underlying medium in the presence of a creation mechanism such as, for instance, neutrons in nuclear reactors. The physical coefficients of the domain are ε-periodic functions modulated by a macroscopic variable, where ε is a small parameter. The mean free path of the particles is also of order ε. We assume that the leading eigenvalue of the periodicity cell problem admits a unique minimum in the domain at a point x0 where its Hessian matrix is positive definite. This assumption yields a concentration phenomenon around x0, as ε goes to 0, at a new scale of the order of $\sqrt{\varepsilon}$ which is superimposed with the usual ε oscillations of the homogenized limit. More precisely, we prove that the particle density is asymptotically the product of two terms. The first one is the leading eigenvector of a cell transport equation with periodic boundary conditions. The second term is the first eigenvector of a homogenized diffusion equation in the whole space with quadratic potential, rescaled by a factor $\sqrt{\varepsilon}$, i.e., of the form $\exp \left (- \frac {1} {2 \varepsilon} M (x-x_0)\cdot (x-x_0) \right )$, where M is a positive definite matrix. Furthermore, the eigenvalue corresponding to this second term gives a first-order correction to the eigenvalue of the heterogeneous spectral transport problem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaire, G., Homogenization and two scale convergence. SIAM 23 (1992) 1482-1518. CrossRef
Allaire, G. and Bal, G., Homogenization of the critically spectral equation in neutron transport. ESAIM: M2AN 33 (1999) 721-746. CrossRef
Allaire, G. and Capdeboscq, Y., Homogenization of a spectral problem in neutronic multigroup diffusion. Comput. Methods Appl. Mech. Engrg. 187 (2000) 91-117. CrossRef
Allaire, G. and Piatnitski, A., Uniform spectral asymptotics for singularly perturbed locally periodic operators. Com. Partial Differential Equations 27 (2002) 705-725. CrossRef
P. Anselone, Collectively compact operator approximation theory. Prentice-Hall, Englewood Cliffs, NJ (1971).
G. Bal, Couplage d'équations et homogénéisation en transport neutronique, Ph.D. Thesis. Paris 6 (1997).
height 2pt depth -1.6pt width 23pt, Homogenization, of a spectral equation with drift in linear transport. ESAIM: COCV 6 (2001) 613-627.
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Boundary layer and homogenization of transport processes. Publ. RIMS Kyoto Univ. (1979) 53-157.
Y. Capdeboscq, Homogénéisation des modèles de diffusion en neutronique, Ph.D. Thesis. Paris 6 (1999).
F. Chatelin, Spectral approximation of linear operators. Academic Press (1983).
R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Springer Verlag, Berlin (1993).
Degond, P., Goudon, T. and Poupaud, F., Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49 (2000) 1175-1198.
J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View. Springer-Verlag, New York, Berlin (1981).
Golse, F., Lions, P.L., Perthame, B. and Sentis, R., Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988) 110-125. CrossRef
F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport. C. R. Acad. Sci. Paris (1985) 341-344.
T. Goudon and A. Mellet, Diffusion approximation in heterogeneous media. Asymptot. Anal. (to appear).
Goudon, T. and Poupaud, F., Approximation by homogenization and diffusion of kinetic equations. Comm. Partial Differential Equations 26 (2001) 537-569. CrossRef
Kozlov, S., Reductibility of quasiperiodic differential operators and averaging. Transc. Moscow Math. Soc. 2 (1984) 101-126.
E. Larsen, Neutron transport and diffusion in inhomogeneous media (1). J. Math. Phys. (1975) 1421-1427.
height 2pt depth -1.6pt width 23pt, Neutron transport and diffusion in inhomogeneous media (2). Nuclear Sci. Engrg. (1976) 357-368.
E. Larsen and J. Keller, Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. (1974) 75-81.
M. Mokhtar-Kharoubi, Les équations de la neutronique, Thèse de Doctorat d'État. Paris XIII (1987).
M. Mokhtar-Kharoubi, Mathematical topics in neutron transport theory. World Scientific Publishing Co. Inc., River Edge, NJ (1997).
Piatnitski, A., Asymptotic behaviour of the ground state of singularly perturbed elliptic equations. Commun. Math. Phys. 197 (1998) 527-551. CrossRef
Potter, J.E., Matrix quadratic solutions, J. SIAM Appl. Math. 14 (1966) 496-501. CrossRef
D.L. Russel, Mathematics of finite-dimensional control systems, theory and design. Lecture Notes in Pure Appl. Math. 43 (1979).
R. Sentis, Study of the corrector of the eigenvalue of a transport operator. SIAM J. Math. Anal. (1985) 151-166.