Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-4g88t Total loading time: 0.229 Render date: 2021-09-21T20:52:46.469Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Stabilization of walls for nano-wires of finite length

Published online by Cambridge University Press:  02 December 2010

Gilles Carbou
Affiliation:
MAB, UMR 5466, CNRS, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France. carbou@math.u-bordeaux1.fr
Stéphane Labbé
Affiliation:
Université Joseph Fourier, Laboratoire Jean Kuntzmann, CNRS, UMR 5224, 51 rue des Mathématiques, B.P. 53, 38041 Grenoble Cedex 9, France; stephane.labbe@imag.fr
Get access

Abstract

In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alouges, F., Rivière, T. and Serfaty, S., Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 3168. Google Scholar
W.F. Brown, Micromagnetics. Interscience Publisher, John Willey and Sons, New York (1963).
Carbou, G., Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409433. Google Scholar
Carbou, G., Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11 (2001) 15291546. Google Scholar
Carbou, G. and Fabrie, P., Time average in micromagnetism. J. Differ. Equ. 147 (1998) 383409. Google Scholar
Carbou, G. and Fabrie, P., Regular solutions for Landau-Lifschitz equation in a bounded domain. Differential Integral Equations 14 (2001) 213229. Google Scholar
Carbou, G. and Fabrie, P., Regular solutions for Landau-Lifschitz equation in R3. Commun. Appl. Anal. 5 (2001) 1730. Google Scholar
Carbou, G. and Labbé, S., Stability for static walls in ferromagnetic nanowires. Discrete Continous Dyn. Syst. Ser. B 6 (2006) 273290. Google Scholar
Carbou, G., Labbé, S. and Trélat, E., Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 5159. Google Scholar
A. DeSimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures – a paradigm of multiscale problems, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford (2000) 175–190.
Halpern, L. and Labbé, S., Modélisation et simulation du comportement des matériaux ferromagnétiques. Matapli 66 (2001) 7086. Google Scholar
Kapitula, T., Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc. 349 (1997) 257269. Google Scholar
Kühn, K., Travelling waves with a singularity in magnetic nanowires. Commun. Partial Diff. Equ. 34 (2009) 722764. Google Scholar
S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Thèse de l’Université Paris 13, Paris (1998).
Labbé, S. and Bertin, P.-Y., Microwave polarisability of ferrite particles with non-uniform magnetization. J. Magn. Magn. Mater. 206 (1999) 93105. Google Scholar
Rivière, T. and Serfaty, S., Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Diff. Equ. 28 (2003) 249269. Google Scholar
D. Sanchez, Méthodes asymptotiques en ferromagnétisme. Thèse de l’Université Bordeaux 1, Bordeaux (2004).
Thiaville, A., Garcia, J.M. and Miltat, J., Domain wall dynamics in nanowires. J. Magn. Magn. Mater. 242–245 (2002) 10611063. Google Scholar
Visintin, A., On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics 1 (1985) 6984. Google Scholar
H. Wynled, Ferromagnetism, Encyclopedia of Physics XVIII/2. Springer-Verlag, Berlin (1966).

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stabilization of walls for nano-wires of finite length
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Stabilization of walls for nano-wires of finite length
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Stabilization of walls for nano-wires of finite length
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *