Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T10:49:12.489Z Has data issue: false hasContentIssue false

Vanishing of cohomology and parameter rigidity of actions of solvable Lie groups, II

Published online by Cambridge University Press:  03 November 2020

HIROKAZU MARUHASHI*
Affiliation:
The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan (e-mail: maruhashihirokazu@gmail.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $M\stackrel {\rho _0}{\curvearrowleft }S$ be a $C^\infty $ locally free action of a connected simply connected solvable Lie group S on a closed manifold M. Roughly speaking, $\rho _0$ is parameter rigid if any $C^\infty $ locally free action of S on M having the same orbits as $\rho _0$ is $C^\infty $ conjugate to $\rho _0$ . In this paper we prove two types of result on parameter rigidity.

First let G be a connected semisimple Lie group with finite center of real rank at least $2$ without compact factors nor simple factors locally isomorphic to $\mathop {\mathrm {SO}}\nolimits _0(n,1)(n\,{\geq}\, 2)$ or $\mathop {\mathrm {SU}}\nolimits (n,1)(n\geq 2)$ , and let $\Gamma $ be an irreducible cocompact lattice in G. Let $G=KAN$ be an Iwasawa decomposition. We prove that the action $\Gamma \backslash G\curvearrowleft AN$ by right multiplication is parameter rigid. One of the three main ingredients of the proof is the rigidity theorems of Pansu, and Kleiner and Leeb on the quasi-isometries of Riemannian symmetric spaces of non-compact type.

Secondly we show that if $M\stackrel {\rho _0}{\curvearrowleft }S$ is parameter rigid, then the zeroth and first cohomology of the orbit foliation of $\rho _0$ with certain coefficients must vanish. This is a partial converse to the results in the author’s [Vanishing of cohomology and parameter rigidity of actions of solvable Lie groups. Geom. Topol. 21(1) (2017), 157–191], where we saw sufficient conditions for parameter rigidity in terms of vanishing of the first cohomology with various coefficients.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press

References

REFERENCES

Asaoka, M.. Nonhomogeneous locally free actions of the affine group. Ann. Math. (2) 175(1) (2012), 121.10.4007/annals.2012.175.1.1CrossRefGoogle Scholar
Asaoka, M.. Deformation of locally free actions and leafwise cohomology. Foliations: Dynamics, Geometry and Topology (Advanced Courses in Mathematics – CRM Barcelona). Birkhäuser/Springer, Basel, CH, 2014, pp. 140.CrossRefGoogle Scholar
Breuillard, E.. Geometry of locally compact groups of polynomial growth and shape of large balls. Groups Geom. Dyn. 8(3) (2014), 669732.CrossRefGoogle Scholar
Dixmier, J.. L’application exponentielle dans les groupes de Lie résolubles. Bull. Soc. Math. France 85 (1957), 113121.CrossRefGoogle Scholar
Farb, B. and Mosher, L.. On the asymptotic geometry of abelian-by-cyclic groups. Acta Math. 184(2) (2000), 145202.CrossRefGoogle Scholar
Greenleaf, F. P. Invariant Means on Topological Groups and Their Applications (Van Nostrand Mathematical Studies, 16). Van Nostrand Reinhold Co., New York, 1969.Google Scholar
Helgason, S.. Differential Geometry, Lie Groups and Symmetric Spaces (Graduate Studies in Mathematics, 34). American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.CrossRefGoogle Scholar
Hochschild, G.. The automorphism group of a Lie group. Trans. Amer. Math. Soc. 72 (1952), 209216.Google Scholar
Jacobson, N.. A note on automorphisms and derivations of Lie algebras. Proc. Amer. Math. Soc. 6 (1955), 281283.10.1090/S0002-9939-1955-0068532-9CrossRefGoogle Scholar
Kanai, M.. Rigidity of the Weyl chamber flow, and vanishing theorems of Matsushima and Weil. Ergod. Th. & Dynam. Sys. 29(4) (2009), 12731288.CrossRefGoogle Scholar
Katok, A. and Spatzier, R. J.. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Publ. Math. Inst. Hautes Études Sci. 79 (1994), 131156.10.1007/BF02698888CrossRefGoogle Scholar
Katok, A. and Spatzier, R. J. Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Math. Res. Lett. 1(2) (1994), 193202.CrossRefGoogle Scholar
Kleiner, B. and Leeb, B.. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Publ. Math. Inst. Hautes Études Sci. 86 (1997), 115197 (1998).10.1007/BF02698902CrossRefGoogle Scholar
Knapp, A. W.. Lie Groups Beyond an Introduction (Progress in Mathematics, 140), 2nd edn. Birkhäuser Boston, Inc., Boston, MA, 2002.Google Scholar
Kononenko, A.. Infinitesimal rigidity of boundary lattice actions. Ergod. Th. & Dynam. Sys. 19(1) (1999), 3560.CrossRefGoogle Scholar
Maruhashi, H.. Parameter rigid actions of simply connected nilpotent Lie groups. Ergod. Th. & Dynam. Sys. 33(6) (2013), 18641875.CrossRefGoogle Scholar
Maruhashi, H.. Vanishing of cohomology and parameter rigidity of actions of solvable Lie groups. Geom. Topol. 21(1) (2017), 157191.10.2140/gt.2017.21.157CrossRefGoogle Scholar
Pansu, P.. Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. (2) 129(1) (1989), 160.CrossRefGoogle Scholar
Reiter Ahlin, A.. The large scale geometry of nilpotent-by-cyclic groups. Preprint, 2005, arXiv:math/0507301.Google Scholar
Saito, M.. Sur certains groupes de Lie résolubles. II. Sci. Papers Coll. Gen. Ed. Univ. Tokyo 7 (1957), 157168.Google Scholar
Starkov, A. N.. Rigidity problem for lattices in solvable Lie groups. Proc. Indian Acad. Sci. Math. Sci. 104(3) (1994), 495514.CrossRefGoogle Scholar