Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T05:55:57.476Z Has data issue: false hasContentIssue false

Extensive amenability and an application to interval exchanges

Published online by Cambridge University Press:  29 July 2016

KATE JUSCHENKO
Affiliation:
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, USA email kate.juschenko@gmail.com
NICOLÁS MATTE BON
Affiliation:
Université Paris-Sud & Ecole Normale Supérieure, DMA, 45 rue d’Ulm, 75230 Paris Cedex 05, France email nicolas.matte.bon@ens.fr
NICOLAS MONOD
Affiliation:
EPFL, 1015 Lausanne, Switzerland email nicolas.monod@epfl.ch
MIKAEL DE LA SALLE
Affiliation:
UMPA UMR CNRS 5669 - ENS de Lyon, 46 allée d’Italie, 69364, Lyon Cedex 07, France email mikael.de.la.salle@ens-lyon.fr

Abstract

Extensive amenability is a property of group actions which has recently been used as a tool to prove amenability of groups. We study this property and prove that it is preserved under a very general construction of semidirect products. As an application, we establish the amenability of all subgroups of the group $\text{IET}$ of interval exchange transformations that have angular components of rational rank less than or equal to two. In addition, we obtain a reformulation of extensive amenability in terms of inverted orbits and use it to present a purely probabilistic proof that recurrent actions are extensively amenable. Finally, we study the triviality of the Poisson boundary for random walks on $\text{IET}$ and show that there are subgroups $G<\text{IET}$ admitting no finitely supported measure with trivial boundary.

Type
Research Article
Copyright
© Cambridge University Press, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amir, G., Angel, O., Matte Bon, N. and Virág, B.. The Liouville property for groups acting on rooted trees. Preprint, 2013, arXiv:1307.5652.Google Scholar
Amir, G., Angel, O. and Virag, B.. Amenability of linear-activity automaton groups. J. Eur. Math. Soc. (JEMS) 15(3) (2013), 705730.Google Scholar
Amir, G. and Virág, B.. Speed exponents for random walks on groups. Preprint, 2012, arXiv:1203.6226.Google Scholar
Amir, G. and Virág, B.. Positive speed for high-degree automaton groups. Groups Geom. Dyn. 8(1) (2014), 2338.Google Scholar
Bartholdi, L. and Erschler, A.. Poisson–Furstenberg boundary and growth of groups. Preprint, 2011, arXiv:1107.5499.Google Scholar
Bartholdi, L. and Erschler, A.. Growth of permutational extensions. Invent. Math. 189(2) (2012), 431455.Google Scholar
Bartholdi, L., Kaimanovich, V. A. and Nekrashevych, V. V.. On amenability of automata groups. Duke Math. J. 154(3) (2010), 575598.Google Scholar
Baldi, P., Lohoué, N. and Peyrière, J.. Sur la classification des groupes récurrents. C. R. Acad. Sci. Paris Sér. A-B 285(16) (1977), A1103A1104.Google Scholar
Bondarenko, I. V.. Growth of Schreier graphs of automaton groups. Math. Ann. 354(2) (2012), 765785.Google Scholar
de Cornulier, Y.. Groupes pleins-topologiques [d’après Matui, Juschenko, Monod, …]. 2013. Written exposition of the Bourbaki Seminar of January 19th, 2013. Available at www.normalesup.org/∼cornulier/.Google Scholar
Dahmani, F., Fujiwara, K. and Guirardel, V.. Free groups of interval exchange transformations are rare. Groups Geom. Dyn. 7(4) (2013), 883910.CrossRefGoogle Scholar
Elek, G. and Monod, N.. On the topological full group of a minimal Cantor Z 2 -system. Proc. Amer. Math. Soc. 141(10) (2013), 35493552.Google Scholar
Juschenko, K. and de la Salle, M.. Invariant means of the wobbling group. Bull. Belg. Math. Soc. Simon Stevin 22(2) (2015), 281290.Google Scholar
Juschenko, K. and Monod, N.. Cantor systems, piecewise translations and simple amenable groups. Ann. of Math. (2) 178(2) (2013), 775787.Google Scholar
Juschenko, K., Nekrashevych, V. and de la Salle, M.. Extensions of amenable groups by recurrent groupoids. Preprint, 2013, arXiv:1305.2637v2.Google Scholar
Keane, M.. Interval exchange transformations. Math. Z. 141 (1975), 2531.Google Scholar
Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54) . Cambridge University Press, Cambridge, 1995, With a supplementary chapter by Katok and Leonardo Mendoza.Google Scholar
Katok, A. B. and Stepin, A. M.. Approximations in ergodic theory. Usp. Mat. Nauk 22(5 (137)) (1967), 81106.Google Scholar
Kaĭmanovich, V. A. and Vershik, A. M.. Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3) (1983), 457490.CrossRefGoogle Scholar
Lyons, R. and Peres, Y.. Probability on Trees and Networks. Cambridge University Press, Cambridge, 2016, Available at http://pages.iu.edu/∼rdlyons/.Google Scholar
Matte Bon, N.. Subshifts with slow complexity and simple groups with the Liouville property. Geom. Funct. Anal. 24(5) (2014), 16371659.Google Scholar
Monod, N.. Groups of piecewise projective homeomorphisms. Proc. Natl. Acad. Sci. USA 110(12) (2013), 45244527.Google Scholar
Monod, N. and Popa, S.. On co-amenability for groups and von Neumann algebras. C. R. Math. Acad. Sci. Soc. R. Can. 25(3) (2003), 8287.Google Scholar
Sidki, S.. Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. J. Math. Sci. (New York) 100(1) (2000), 19251943 Algebra, 12.CrossRefGoogle Scholar
van Douwen, E. K.. Measures invariant under actions of F 2 . Topology Appl. 34(1) (1990), 5368.CrossRefGoogle Scholar
Viana, M.. Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1) (2006), 7100.Google Scholar
Woess, W.. Random Walks on Infinite Graphs and Groups (Cambridge Tracts in Mathematics, 138) . Cambridge University Press, Cambridge, 2000.Google Scholar