Article contents
The absorption theorem for affable equivalence relations
Published online by Cambridge University Press: 01 October 2008
Abstract
We prove a result about extension of a minimal AF-equivalence relation R on the Cantor set X, the extension being ‘small’ in the sense that we modify R on a thin closed subset Y of X. We show that the resulting extended equivalence relation S is orbit equivalent to the original R, and so, in particular, S is affable. Even in the simplest case—when Y is a finite set—this result is highly non-trivial. The result itself—called the absorption theorem—is a powerful and crucial tool for the study of the orbit structure of minimal ℤn-actions on the Cantor set, see Remark 4.8. The absorption theorem is a significant generalization of the main theorem proved in Giordano et al [Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Th. & Dynam. Sys.24 (2004), 441–475] . However, we shall need a few key results from the above paper in order to prove the absorption theorem.
- Type
- Research Article
- Information
- Copyright
- Copyright © 2008 Cambridge University Press
References
- 10
- Cited by