Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-rlmms Total loading time: 0.186 Render date: 2021-10-23T21:59:21.819Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Tiling spaces are Cantor set fiber bundles

Published online by Cambridge University Press:  16 January 2003

LORENZO SADUN
Affiliation:
Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA (e-mail: sadun@math.utexas.edu)
R. F. WILLIAMS
Affiliation:
Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA (e-mail: sadun@math.utexas.edu)

Abstract

We prove that fairly general spaces of tilings of \mathbb{R}^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in the second author's recent work, and proved in certain cases. In fact, we show that each such space is homeomorphic to the d-fold suspension of a \mathbb{Z}^d subshift (or equivalently, a tiling space whose tiles are marked unit d-cubes). The only restrictions on our tiling spaces are that (1) the tiles are assumed to be polygons (polyhedra if d>2) that meet full-edge to full-edge (or full-face to full-face), (2) only a finite number of tile types are allowed, and (3) each tile type appears in only a finite number of orientations. The proof is constructive and we illustrate it by constructing a ‘square’ version of the Penrose tiling system.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
26
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Tiling spaces are Cantor set fiber bundles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Tiling spaces are Cantor set fiber bundles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Tiling spaces are Cantor set fiber bundles
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *