Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T23:58:44.426Z Has data issue: false hasContentIssue false

Land ownership patterns associated with declining forest birds: targeting the right policy and management for the right birds

Published online by Cambridge University Press:  24 February 2015

Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick NJ 08901, USA Rutgers Cooperative Extension, New Jersey Agricultural Experiment Station, Rutgers, The State University of New Jersey, 88 Lipman Drive, New Brunswick NJ 08901, USA
Rutgers Cooperative Extension, New Jersey Agricultural Experiment Station, Rutgers, The State University of New Jersey, 88 Lipman Drive, New Brunswick NJ 08901, USA
Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick NJ 08901, USA
*Correspondence: Dr Brooke Maslo Tel : +1 848 932 5572 e-mail:


For over a century the foundation of biological conservation has been the development of open space networks either through outright public land acquisition or appropriate management of private lands. Because both approaches come with significant trade-offs, it is critical to understand which species are found across various land ownership types so that policy tools and management actions can efficiently be targeted to do the most good. In this paper, presence-only biological data were used to create species distribution maps for 18 imperilled forest bird species that breed within the deciduous forests of New Jersey (USA). These maps, combined with publicly available, spatially explicit information on land ownership, document who owns the habitat relied on by each of these 18 species. There were significant variations in both species- and guild-specific reliance on public versus private lands, with the latter preferentially supporting nearly twice as many species as the former. Subcategories of land ownership provided support for the role of both state-owned forests and privately-owned agricultural lands in forest bird conservation; however, each landownership type supports a distinct set of species. While explicitly recognizing the need to employ diverse conservation strategies, the approach provides a solid framework for structuring forest conservation planning and policy at regional scales.

Copyright © Foundation for Environmental Conservation 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Askins, R. A., Zuckerberg, B. & Novak, L. (2007) Do the size and landscape context of forest openings influence the abundance and breeding success of shrubland songbirds in southern New England? Forest Ecology and Management 250 (3): 137147.CrossRefGoogle Scholar
Beaudry, F., Pidgeon, A. M., Mladenoff, D. J., Howe, R. W., Bartelt, G. A. & Radeloff, V. C. (2011) Optimizing regional conservation planning for forest birds. Journal of Applied Ecology 48 (3): 726735.CrossRefGoogle Scholar
Bengston, D. N., Fletcher, J. O. & Nelson, K. C. (2004) Public policies for managing urban growth and protecting open space: policy instruments and lessons learned in the United States. Landscape and Urban Planning 69 (2): 271286.CrossRefGoogle Scholar
Benton, T. G., Vickery, J. A. & Wilson, J. D. (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution 18 (4): 182188.CrossRefGoogle Scholar
Bowers, J. (1999) Policy instruments for the conservation of remnant vegetation on private land. Biological Conservation 87 (3): 327339.CrossRefGoogle Scholar
Brook, A., Zint, M. & De Young, R. (2003) Landowners' responses to an Endangered Species Act listing and implications for encouraging conservation. Conservation Biology 17 (6): 16381649.CrossRefGoogle Scholar
Buermann, W., Saatchi, S., Smith, T. B., Zutta, B. R., Chaves, J. A., Milá, B. & Graham, C. H. (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography 35 (7): 11601176.CrossRefGoogle Scholar
Ciuzio, E., Hohman, W. L., Martin, B., Smith, M. D., Stephens, S., Strong, A. M. & Vercauteren, T. (2013) Opportunities and challenges to implementing bird conservation on private lands. Wildlife Society Bulletin 37 (2): 267277.CrossRefGoogle Scholar
Crossman, N. D., Bryan, B. A., Ostendorf, B. & Collins, S. (2007) Systematic landscape restoration in the rural–urban fringe: meeting conservation planning and policy goals. Biodiversity and Conservation 16 (13): 37813802.CrossRefGoogle Scholar
Dettmers, R. (2003) Status and conservation of shrubland birds in the northeastern US. Forest Ecology and Management 185 (1): 8193.CrossRefGoogle Scholar
Dettmers, R. & Rosenberg, K. (2000) Partners in Flight landbird conservation plan: physiographic area 9: southern New England. Report. American Bird Conservancy, Arlington, Virginia, USA.Google Scholar
Dey, A. D. (2005) The importance of spatial scale and non-forest habitats in predicting occurrence of area-sensitive forest birds. PhD thesis, Rutgers University, NJ, USA.Google Scholar
Dutton, A., Edwards-Jones, G., Strachan, R. & Macdonald, D. W. (2008) Ecological and social challenges to biodiversity conservation on farmland: reconnecting habitats on a landscape scale. Mammal Review 38(2‐3): 205219.CrossRefGoogle Scholar
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17 (1): 4357.CrossRefGoogle Scholar
ESRI (2012) ArcMap 10.1. Software. ESRI, Redlands, CA, USA.Google Scholar
Forman, R.T.T. & Godron, M. (1986) Landscape Ecology. New York, NY, USA: John Wiley & Sons.Google Scholar
Gallo, J. A., Pasquini, L., Reyers, B. & Cowling, R. M. (2009) The role of private conservation areas in biodiversity representation and target achievement within the Little Karoo region, South Africa. Biological Conservation 142 (2): 446454.CrossRefGoogle Scholar
Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. (2008) The ecological performance of protected areas. Annual Review of Ecology, Evolution, and Systematics 39: 93113.CrossRefGoogle Scholar
Groves, C. R., Kutner, L. S., Stoms, D. M., Murray, M. P., Scott, J. M., Schafale, M., Weakley, A. S. & Pressey, R. L. (2000) Owning up to our responsibilities: who owns lands important for biodiversity. In: Precious Heritage: the Status of Biodiversity in the United States, ed. Stein, B.A., Kutner, L.S. & Adams, J.S., pp. 275300. New York, NY, USA: Oxford University Press.Google Scholar
Guerrero, A. M., Knight, A. T., Grantham, H. S., Cowling, R. M. & Wilson, K. A. (2010) Predicting willingness‐to‐sell and its utility for assessing conservation opportunity for expanding protected area networks. Conservation Letters 3 (5): 332339.CrossRefGoogle Scholar
Hasse, J. E. & Lathrop, R. G. (2003) Land resource impact indicators of urban sprawl. Applied Geography 23 (2): 159175.CrossRefGoogle Scholar
Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29 (5): 773785.CrossRefGoogle Scholar
Hilty, J. & Merenlender, A. M. (2003) Studying biodiversity on private lands. Conservation Biology 17 (1): 132137.CrossRefGoogle Scholar
Jackson, S. F., Walker, K. & Gaston, K. J. (2009) Relationship between distributions of threatened plants and protected areas in Britain. Biological Conservation 142 (7): 15151522.CrossRefGoogle Scholar
Kautz, R. S. & Cox, J. A. (2001) Strategic habitats for biodiversity conservation in Florida. Conservation Biology 15 (1): 5577.CrossRefGoogle Scholar
Kittredge, D. B., Finley, A. O. & Foster, D. R. (2003) Timber harvesting as ongoing disturbance in a landscape of diverse ownership. Forest Ecology and Management 180 (1): 425442.CrossRefGoogle Scholar
Langpap, C. (2004) Conservation incentives programs for endangered species: an analysis of landowner participation. Land Economics 80 (3): 375388.CrossRefGoogle Scholar
Langpap, C. (2006) Conservation of endangered species: can incentives work for private landowners? Ecological Economics 57 (4): 558572.CrossRefGoogle Scholar
Lathrop, R. G. (2011) The Highlands: Critical Resources, Treasured Landscapes. New Brunswick, NJ, USA: Rutgers University Press.CrossRefGoogle Scholar
Matta, J., Alavalapati, J. & Tanner, G. (2007) A framework for developing marked-based policies to further biodiversity on non-industrial private forests (NIPF). Forest Policy and Economics 9 (7): 779788.CrossRefGoogle Scholar
McGarigal, K., Cushman, S. A. & Ene, E. (2012) FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. University of Massachusetts, Amherst, MA, USA.Google Scholar
Merckx, T., Feber, R. E., Riordan, P., Townsend, M. C., Bourn, N. A. D., Parsons, M. S. & Macdonald, D. W. (2009) Optimizing the biodiversity gain from agri-environmental schemes. Agriculture, Ecosystems and Environment 130: 177182.CrossRefGoogle Scholar
Merow, C., Smith, M. J. & Silander, J. A. (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36 (10): 10581069.CrossRefGoogle Scholar
Mir, D. F. & Dick, K. (2012) Conservation approaches to protecting critical habitats and species on private property. Natural Areas Journal 32 (2): 190198.Google Scholar
NABCI (2011) The state of the birds 2011 report on public lands and waters. Report. US Department of Interior, Washington, DC, USA.Google Scholar
NJDEP (2002) NJDEP 2002 land use/land cover. Bureau of Geographic Information Systems (BGIS), Trenton, NJ, USA.Google Scholar
Norris, K. (2008) Agriculture and biodiversity conservation: opportunity knocks. Conservation Letters 1 (1): 211.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190 (3): 231259.CrossRefGoogle Scholar
Phillips, S. J. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31 (2): 161175.CrossRefGoogle Scholar
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19 (1): 181197.CrossRefGoogle ScholarPubMed
Riitters, K. H., O'Neill, R. V., Wickham, J. D. & Jones, K. B. (1996) A note on contagion indices for landscape analysis. Landscape Ecology 11 (4): 197202.CrossRefGoogle Scholar
Robles, M. D., Flather, C. H., Stein, S. M., Nelson, M. D. & Cutko, A. (2008) The geography of private forests that support at-risk species in the conterminous United States. Frontiers in Ecology and the Environment 6 (6): 301307.CrossRefGoogle Scholar
Rödder, D., Kielgast, J., Bielby, J., Schmidtlein, S., Bosch, J., Garner, T. W., Veith, M., Walker, S., Fisher, M. C. & Lötters, S. (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1 (1): 5266.CrossRefGoogle Scholar
Rosenberg, K. V., Hames, R. S., Rohrbaugh, R. W., Swarthout, S. B., Lowe, J. D. & Dhondt, A. A. (2003) A land manager's guide to improving habitat for forest thrushes. Report. The Cornell Laboratory of Ornithology, New York, NY, USA [www document]. Google Scholar
Roth, A. M., Rohrbaugh, R. W., Will, T. & Buehler, D. A. (2012) Golden-winged warbler status review and conservation plan. The Cornell Laboratory of Ornithology, Ithaca, NY, USA [www document]. Google Scholar
Royle, J. A., Chandler, R. B., Yackulic, C. & Nichols, J. D. (2012) Likelihood analysis of species occurrence probability from presence‐only data for modelling species distributions. Methods in Ecology and Evolution 3 (3): 545554.CrossRefGoogle Scholar
Sauer, J. R., HInes, J. E., Fallon, J. E., Pardieck, K. L., Ziolkowski, J., D.J. & Link, W. A. (2012) The North American breeding bird survey, results and analysis 1966–2011. Report. UPWR Center, Laurel, MD, USA [www document]. Google Scholar
Scott, J. M., Davis, F. W., McGhie, R. G., Wright, R. G., Groves, C. & Estes, J. (2001) Nature reserves: do they capture the full range of America's biological diversity? Ecological Applications 11 (4): 9991007.CrossRefGoogle Scholar
Swanson, M. E., Franklin, J. F., Beschta, R. L., Crisafulli, C. M., DellaSala, D. A., Hutto, R. L., Lindenmayer, D. B. & Swanson, F. J. (2010) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Frontiers in Ecology and the Environment 9 (2): 117125.CrossRefGoogle Scholar
Thogmartin, W. E., Crimmins, S. M. & Pearce, J. (2014) Prioritizing bird conservation actions in the prairie hardwood transition of the Midwestern United States. Biological Conservation 176: 212223.CrossRefGoogle Scholar
Thogmartin, W. E. & Rohweder, J. H. (2009) Conservation opportunity assessment for rare birds in the midwestern United States: a private lands imperative. In: Tundra to Tropics: Connecting Birds, Habitats and People, Proceedings of the 4th International Partners in Flight Conference, ed. Rich, T. D., Arizmendi, C., Demarest, D. & Thompson, C., pp. 419425. McAllen, TX, USA: International Partners in Flight.Google Scholar
Witmer, G. W. (2005) Wildlife population monitoring: some practical considerations. Wildlife Research 32 (3): 259263.CrossRefGoogle Scholar
Zar, J. H. (1999) Biostatistical Analysis. India: Pearson Education.Google Scholar
Zimmerer, K. S., Galt, R. E. & Buck, M. V. (2004) Globalization and multi-spatial trends in the coverage of protected-area conservation (1980-2000). Ambio 33 (8): 520529.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Maslo supplementary material

Maslo supplementary material 1

Download Maslo supplementary material(PDF)
PDF 1.9 MB
Supplementary material: File

Maslo supplemetary material

Table S1-S3

Download Maslo supplemetary material(File)
File 28 KB