Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-k9l4c Total loading time: 0.627 Render date: 2023-02-06T10:05:47.072Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Assessing the efficiency of protected areas to represent biodiversity: a small island case study

Published online by Cambridge University Press:  06 June 2016

MARTA VERGÍLIO*
Affiliation:
CIBIO – Research Center in Biodiversity and Genetic Resources/InBIO – Associate Laboratory, University of the Azores, Rua da Mãe de Deus, 13-A, Ponta Delgada 9501–801, Portugal
CATARINA FONSECA
Affiliation:
CIBIO – Research Center in Biodiversity and Genetic Resources/InBIO – Associate Laboratory, University of the Azores, Rua da Mãe de Deus, 13-A, Ponta Delgada 9501–801, Portugal
HELENA CALADO
Affiliation:
CIBIO – Research Center in Biodiversity and Genetic Resources/InBIO – Associate Laboratory, University of the Azores, Rua da Mãe de Deus, 13-A, Ponta Delgada 9501–801, Portugal
PAULO A.V. BORGES
Affiliation:
cE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores – Departamento de Ciências e Engenharia do Ambiente, Rua Capitão João d'Àvila, São Pedro, 9700-042 Angra do Heroìsmo, Terceira, Azores, Portugal
RUI BENTO ELIAS
Affiliation:
cE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores – Departamento de Ciências Agrárias, Rua Capitão João d'Àvila, São Pedro, 9700-042 Angra do Heroìsmo, Terceira, Azores, Portugal
ROSALINA GABRIEL
Affiliation:
cE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores – Departamento de Ciências e Engenharia do Ambiente, Rua Capitão João d'Àvila, São Pedro, 9700-042 Angra do Heroìsmo, Terceira, Azores, Portugal
ANTÓNIO MARTINS
Affiliation:
CIBIO – Research Center in Biodiversity and Genetic Resources/InBIO – Associate Laboratory, University of the Azores, Rua da Mãe de Deus, 13-A, Ponta Delgada 9501–801, Portugal
EDUARDO AZEVEDO
Affiliation:
Center of Climate, Meteorology and Global Change of the University of the Azores (CCMMG-CITA-A) – Departamento de Ciências Agrárias, Universidade dos Açores, Angra do Heroísmo, Portugal
PEDRO CARDOSO
Affiliation:
cE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores – Departamento de Ciências e Engenharia do Ambiente, Rua Capitão João d'Àvila, São Pedro, 9700-042 Angra do Heroìsmo, Terceira, Azores, Portugal Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, 00014 Helsinki, Finland
*
*Correspondence: Marta Vergílio e-mail: marta.hs.vergilio@uac.pt

Summary

Protected areas (PAs) have been selected using either subjective or objective criteria applied to an extremely limited subset of biodiversity. Improved availability of species distribution data, better statistical tools to predict species distributions and algorithms to optimize spatial conservation planning allow many impediments to be overcome, particularly on small islands. This study analyses whether 219 species are adequately protected by PAs on Pico Island (the Azores, Portugal), and if they are as efficient as possible, maximizing species protection while minimizing costs. We performed distribution modelling of species’ potential distributions, proposed individual conservation targets (considering the context of each species in the archipelago and their current conservation status) to determine the efficiency of current PAs in meeting such targets and identify alternative or complementary areas relevant for conservation. Results showed that current PAs do not cover all taxa, leaving out important areas for conservation. We demonstrate that by using optimization algorithms it is possible to include most species groups in spatial conservation planning in the Azores with the current resources. With increasing availability of data and methods, this approach could be readily extended to other islands and regions with high endemism levels.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. & Anderson, R.P. (2015) Functions for Spatial Thinning of Species Occurrence Records for Use in Ecological Models – Package, Version 0.1.0. [www document]. URL https://cran.r-project.org/web/packages/spThin/spThin.pdf Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.CrossRefGoogle Scholar
Azevedo, E.B. (1996) Modelação do clima insular à escala local. Modelo CIELO aplicado à ilha Terceira. p. 247. PhD Thesis, University of Azores, Ponta Delgada, Portugal.Google Scholar
Barry, S. & Elith, J. (2006) Error and uncertainty in habitat models. Journal of Applied Ecology 43: 413423.CrossRefGoogle Scholar
Borges, P.A.V., Cunha, R., Gabriel, R., Martins, A.F., Silva, L. & Vieira, V. (2005) A list of the terrestrial fauna (Mollusca and Arthropoda) and flora (Bryophyta, Pteridophyta and Spermatophyta) from the Azores. p. 317. Horta, Angra do Heroísmo and Ponta Delgada, Portugal: Direcção Regional do Ambiente and Universidade dos Açores.Google Scholar
Borges, P.A.V., Gabriel, R., Arroz, A.M., Costa, A., Cunha, R.T., Silva, L., Mendonça, E., Martins, A.M.F., Reis, F. & Cardoso, P. (2010) The Azorean Biodiversity Portal: an internet database for regional biodiversity outreach. Systematics and Biodiversity 8: 423434.CrossRefGoogle Scholar
Borges, P.A.V., Serrano, A.R.M. & Quartau, J.A. (2000) Ranking the Azorean Natural Forest Reserves for conservation using their endemic arthropods. Journal of Insect Conservation 4: 129147.CrossRefGoogle Scholar
Calado, H., Fonseca, C., Vergílio, M., Costa, A.C., Moniz, F., Gil, A. & Dias, J.A. (2014 a) Small islands conservation and protected areas. Journal of Integrated Coastal Zone Management/Revista de Gestão Costeira Integrada. 14: 167174.CrossRefGoogle Scholar
Calado, H., Vergílio, M., Fonseca, C., Gil, A., Moniz, F., Silva, S.F., Moreira, M., Bragagnolo, C., Silva, C. & Pereira, M. (2014 b) Developing a planning and management system for protected areas on small islands (The Azores Archipelago, Portugal): the SMARTPARKS Project. Journal of Integrated Coastal Zone Management/Revista de Gestão Costeira Integrada. 14: 335344.CrossRefGoogle Scholar
Calado, H., Lopes, C., Porteiro, J., Paramio, L. & Monteiro, P. (2009) Legal and technical framework of Azorean protected areas. Proceedings of the 10th International Coastal Symposium, Lisbon, Portugal. Journal of Coastal Research SI 56: 11791183.Google Scholar
Cardoso, P., Borges, P.A.V., Costa, A.C., Cunha, R.T., Gabriel, R., Martins, A.M.F., Silva, L., Homem, N., Martins, M., Rodrigues, P., Martins, B. & Mendonça, E. (2008) A perspectiva arquipelágica-Açores. In: TOP 100 – as cem espécies ameaçadas prioritárias em termos de gestão na região europeia biogeográfica da Macaronésia, eds. Martín, J.L., Arechavaleta, M., Borges, P.A.V. & Faria, B., pp. 42449. Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias. [www document]. URL http://www.azoresbioportal.angra.uac.pt/files/noticias_Top%20100%20Cap%203%20portugus.pdf Google Scholar
Cardoso, P., Rigal, F., Fattorini, S., Terzopoulou, S. & Borges, P.A.V (2013) integrating landscape disturbance and indicator species in conservation studies. PLoS ONE 8: e63294.CrossRefGoogle Scholar
COM (2013) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee to the Regions. Green infrastructure (GI) – enhancing Europe's natural capital. No 249 Final, Brussels, Belgium. [www document]. URL http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2013:0249:FIN Google Scholar
Condé, S. & Richard, D. (2002) Biogeographical regions in Europe. The Macaronesian region – volcanic islands in the ocean. In: Report No 1/2002 – Europe's Biodiversity – Biogeographical Regions and Seas. EEA (European Environment Agency). [www document]. URL www.eea.europa.eu/publications/report_2002_0524_154909/biogeographical-regions-in-europe/MacaronesiaReg.pdf Google Scholar
Costa, H., Medeiros, V., Azevedo, E.B. & Silva, L. (2013) Evaluating ecological-niche factor analysis as a modeling tool for environmental weed management in island systems. Weed Research 53: 221230.CrossRefGoogle Scholar
Council Directive2009/147/EC of 30 November 2009 on the conservation of wild birds. [www document]. URL http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0147 Google Scholar
Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. [www document]. URL http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:01992L0043-20070101 Google Scholar
Crespo, L.C., Bosmans, R., Cardoso, P. & Borges, P.A.V. (2014) On three endemic species of the linyphiid spider genus Canariphantes Wunderlich, 1992 (Araneae, Linyphiidae) from the Azores archipelago. Zootaxa 3841: 403417.CrossRefGoogle ScholarPubMed
Damschen, E.I., Haddad, N.M., Orrock, J.L., Tewksbury, J.J. & Levey, D.J. (2006) Corridors increase plant species richness at large scales. Science 313: 12841286.CrossRefGoogle ScholarPubMed
Dudley, N. & Parish, J. (2006) Closing the gap. Creating ecologically representative protected area systems: a guide to conducting the gap assessments of protected area systems for the Convention on Biological Diversity. Technical Series. No. 24, vi+108 pages. Montreal, Canada: Secretariat of the Convention on Biological Diversity. [www document]. URL www.cbd.int/doc/publications/cbd-ts-24.pdf Google Scholar
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M.M., Townsend Peterson, A., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.CrossRefGoogle Scholar
Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. (2014) Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9: e114367.CrossRefGoogle Scholar
Fattorini, S., Cardoso, P., Rigal, F. & Borges, P.A.V. (2012) Use of arthropod rarity for area prioritisation: insights from the Azorean Islands. PLoS ONE 7: e33995.CrossRefGoogle ScholarPubMed
Florencio, M., Cardoso, P., Lobo, J.M., Azevedo, E.B. & Borges, P.A.V. (2013) Arthropod assemblage homogenization in oceanic islands: the role of exotic and indigenous species under landscape disturbance. Diversity and Distributions 19: 14501460.CrossRefGoogle Scholar
Gabriel, R., Homem, N., Couto, A., Aranda, S.C. & Borges, P.A.V. (2011) Azorean bryophytes: a preliminary review of rarity patterns. Açoreana 7: 149206.Google Scholar
Gaspar, C., Gaston, K.J., Borges, P.A.V. & Cardoso, P. (2011) Selection of priority areas for arthropod conservation in the Azores archipelago. Journal of Insect Conservation 15: 671684.CrossRefGoogle Scholar
Gotelli, N.J. & Graves, G.R. (1996) Null models in ecology. Washington, D.C., USA: Smithsonian Institution Press.Google Scholar
Hijmans, R.J., Guarino, L., Cruz, M. & Rojas, E. (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter 127: 1519. [www document]. URL www.diva-gis.org/docs/pgr127_15-19.pdf Google Scholar
Kueffer, C., Daehler, C.C., Torres-Santana, C.W., Lavergne, C., Meyer, J.-Y., Otto, R. & Silva, L. (2010) A global comparison of plant invasions on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics 12: 145161.CrossRefGoogle Scholar
Lindborg, R. & Eriksson, O. (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85: 18401845.CrossRefGoogle Scholar
Liu, C., White, M. & Newell, G. (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40: 778789.CrossRefGoogle Scholar
Margules, C.R. & Pressey, R.L. (2000) Systematic conservation planning. Nature 405: 243253.CrossRefGoogle ScholarPubMed
Mateo, R.G., Vanderpoorten, A., Muñoz, J., Laenen, B. & Désamoré, A. (2013) Modeling species distributions from heterogeneous data for the biogeographic regionalization of the European bryophyte flora. PLoS ONE 8: e55648.CrossRefGoogle ScholarPubMed
Moilanen, A., Kujala, H. & Leathwick, J.R. (2009) The zonation framework and software for conservation prioritization. In: Spatial Conservation Prioritization – Quantitative Methods and Computational Tools, eds., Moilanen, A., Wilson, K.A. & Possingham, H.P.. Oxford, UK: Oxford University Press.Google Scholar
Moilanen, A., Pouzols, F.M., Meller, L., Veach, V., Arponen, A., Leppänen, J. & Kujala, H. (2014) Zonation – spatial conservation planning methods and software. Version 4. User Manual. C-BIG Conservation Biology, Informatics Group, Department of Biosciences, University of Helsinki, Finland. [www document]. URL http://cbig.it.helsinki.fi/files/zonation/zonation_manual_v4_0.pdf Google Scholar
Mulongoy, K.J. & Chape, S. (2004) Protected areas and biodiversity – an overview of key issues. CBD Secretariat, Montreal, Canada and UNEP-WCMC, Cambridge, UK. [www document]. URL http://www.ourplanet.com/wcmc/pdfs/protectedareas.pdf Google Scholar
Pearson, R.G. (2007) Species’ distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. [www document]. URL http://ncep.amnh.org Google Scholar
Phillips, S.J. & Elith, J. (2013) On estimating probability of presence from use–availability or presence–background data. Ecology 94: 14091419.CrossRefGoogle ScholarPubMed
Phillips, S.J., Dudík, M. & Schapire, R.E. (2004) A maximum entropy approach to species distribution modeling. Proceedings of the 21st International Conference on Machine Learning, pp. 655–662. Banff, Canada. [www document]. URL www.cs.princeton.edu/~schapire/papers/maxent_icml.pdf Google Scholar
Pressey, R.L. (1994) Ad hoc reservations: forward or backward steps in developing representative reserve systems? Conservation Biology 8: 662668.CrossRefGoogle Scholar
Regional Legislative Decree No. 15/2012/A of 2 April. Establishes the Legal Regime of Nature Conservation and Biodiversity Protection. [www document]. URL http://dre.pt/pdf1sdip/2012/04/06600/0162501713.pdf Google Scholar
Rodrigues, A.S.L., Akçakaya, H.R., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Chanson, J.S., Fishpool, L.D.C., Fonseca, G.A.B., Gaston, K.J., Hoffmann, M., Marquet, P.A., Pilgrim, J.D., Pressey, R.L., Schipper, J., Sechrest, W., Stuart, S.N., Underhill, L.G., Waller, R.W., Watts, M.E.J. & Yan, X. (2004) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience Reports 54: 10921100.CrossRefGoogle Scholar
Silva, L. & Smith, C.W. (2006) A quantitative approach to the study of non-indigenous plants: an example from the Azores archipelago. Biodiversity Conservation 15: 16611679.CrossRefGoogle Scholar
Soeiro de Brito, R. (2004) São Miguel – a ilha verde, estudo geográfico (1950–2000), 2nd Edition. Ponta Delgada, Portugal.Google Scholar
Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science 240: 12851293.CrossRefGoogle Scholar
Vasconcelos, R., Brito, J.C., Carvalho, S.B., Carranza, S. & Harris, D.J. (2012) Identifying priority areas for island endemics using genetic versus specific diversity – the case of terrestrial reptiles of the Cape Verde Islands. Biological Conservation 153: 276286.CrossRefGoogle Scholar
Whittaker, R.J. & Fernández-Palacios, J.M. (2007) Island biogeography. Ecology, evolution and conservation. New York, USA; Oxford University Press.Google Scholar
Wilson, E. & Piper, J. (2010) Spatial planning and climate change. The natural and built environmental series. Abingdon, UK: Routledge.Google Scholar
Supplementary material: PDF

Vergílio supplementary material

Appendix S1

Download Vergílio supplementary material(PDF)
PDF 166 KB
Supplementary material: PDF

Vergílio supplementary material

Appendix S2

Download Vergílio supplementary material(PDF)
PDF 335 KB
Supplementary material: PDF

Vergílio supplementary material

Appendix S3

Download Vergílio supplementary material(PDF)
PDF 295 KB
Supplementary material: PDF

Vergílio supplementary material

Appendix S4

Download Vergílio supplementary material(PDF)
PDF 227 KB
Supplementary material: PDF

Vergílio supplementary material

Appendix S5

Download Vergílio supplementary material(PDF)
PDF 596 KB
Supplementary material: PDF

Vergílio supplementary material

Appendix S6

Download Vergílio supplementary material(PDF)
PDF 74 KB
12
Cited by

Linked content

Please note a has been issued for this article.

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Assessing the efficiency of protected areas to represent biodiversity: a small island case study
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Assessing the efficiency of protected areas to represent biodiversity: a small island case study
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Assessing the efficiency of protected areas to represent biodiversity: a small island case study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *