Hostname: page-component-7d684dbfc8-8ckrc Total loading time: 0 Render date: 2023-09-27T19:42:51.962Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan

Published online by Cambridge University Press:  28 March 2007

Yasuyuki Yoshimura
National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan
Kazuhito Matsuo
National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan
Koji Yasuda
National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Natural out-crossing rates were evaluated for conventional soybeans (Glycine max (L.) Merr.) cultivated adjacent to genetically modified (GM) glyphosate-tolerant soybeans under field conditions during a four-year period in Japan. A total of 107 846 progeny of 2772 plants harvested from conventional varieties were screened for glyphosate herbicide tolerance. The highest out-crossing rates, 0.19% in 2001 and 0.16% in 2002, were observed in adjacent rows 0.7 m from the pollen source. The highest rate in 2004 was 0.052%, which was observed at 2.1 m. No out-crossing was observed in the rows 10.5 m from the pollen source over the four-year period. The farthest distances between receptor and pollen source at which out-crossing was observed were 7 m in 2001, 2.8 m in 2002, and 3.5 m in 2004. The greatest airborne pollen density during the flowering period, determined by Durham pollen samplers located between the rows of each variety, was 0.368, with the average value at 0.18, indicating that the possibility of out-crossing by wind is minimal. Thrips species and predatory Hemiptera visited the soybean flowers more frequently during the four-year period than any other common pollinators, such as bees.

Research Article
© ISBR, EDP Sciences, 2007


Abe J, Kanazawa A, Shimamoto Y (2000) Wild soybean in far-east Russia: Distribution, ecology and genetic structure of populations. In Genetic diversity and in situ conservation of wild soybeans: Report of grant-in-aid for scientific research from the J.S.P.S., No. 09041135, Abe J, ed, Hokkaido University, Sapporo, pp 3-24.
Ahrent, DK, Caviness, CE (1994) Natural cross-pollination of twelve soybean cultivars in Arkansas. Crop Sci. 6: 211-212
Caviness, CE (1966) Estimates of natural cross pollination in Jackson soybeans in Arkansas. Crop Sci. 34: 376-378
Casas E (1961) Induction of male sterility in soybeans MS thesis. North Carolina State College, Raleigh, 42 p
Chiang YC, Kiang YT (1987) Geometric position of genotypes, honeybee foraging patterns and outcrossing in soybean, Bot. Bull. Acad. Sinica 28: 1-11
Cutler, GH (1934) A simple method for making soybean hybrids. J. Am. Soc. Agron. 26: 252-254 CrossRef
Erickson, EH (1975) Variability of Floral characteristics influence honeybee visitation to soybean flowers. Crop Sci. 15: 767-771 CrossRef
Erickson, EH, Garment, MB (1979) Soya-bean flowers: nectary ultrastructure, nectar guides, and orientation on the flower by foraging honeybees. J. Apic. Res. 18: 3-11 CrossRef
Erickson, EH, Berger, GA, Shannon, JG, Robbins, JM (1978) Honey bee pollination increases soybean yields in the Mississippi Delta region of Arkansas and Missouri. J. Econ. Entomol. 71: 601-603 CrossRef
Fujita R, Ohara M, Okazaki K, Shimamoto Y (1997) The extent of natural cross-pollination in wild soybean (Glycine soja). J. Heredity 88: 124-128
Garber, GJ, Odland, TE (1926) Natural crossing in soybean. Am. Soc. Agron. J. 18: 967-970 CrossRef
Hymowitz T (1970) On the domestication of the soybean. Econ. Bot. 24: 408-421
Irwin ME, Yeargan KV (1980) Sampling phytophagous thrips on soybean. In Kogan M and Herzog DC, ed, Sampling Methods in Soybean Entomology, Springer-Verlag, New York, pp 283-303
James C (2006) Preview: Global status of commercialized biotech/GM Crops: 2005, ISAAA Briefs No. 34
Kikuchi A, Murata K, Tabuchi K, Sakai S (1993) Inheritance of seed embryo color and investigation of degree of natural cross-pollination in soybeans. Breeding Sci. 43 (Suppl. 2): 112
Nakayama Y, Yamaguchi H (2002) Natural hybridization in wild soybean (Glycine max ssp. soja) by pollen flow from cultivated soybean (G. max ssp. max) in a designed population. Weed Biol. Manag. 2: 25-30
Ray JD, Kilen TC, Abel CA, Paris RL (2003) Soybean natural cross-pollination rates under field conditions. Environ. Biosafety Res. 2: 133-138
Rust RW, Mason CE, Erickson EH (1980) Wild bees on soybeans, Glycine max. Environ. Entomol. 9: 230-232
Takagi M (1927) On the frequency of the spontaneous hybridization in soybeans. Japan J. Bot. 3 (68), Abstract No. 197
Weber, CR, Hanson, WD (1961) Natural hybridization with and without ionizing radiation in soybeans. Crop Sci. 1: 389-392 CrossRef
Woodworth CM (1922) The extent of natural cross-pollination in soybeans. J. Amer. Soc. Agron. 14: 278-283