Article contents
STATISTICAL INFERENCE IN COINTEGRATED VECTOR AUTOREGRESSIVE MODELS WITH NONLINEAR TIME TRENDS IN COINTEGRATING RELATIONS
Published online by Cambridge University Press: 03 March 2001
Abstract
This paper continues the work of Saikkonen (2001, Econometric Theory 17, 296–326) and develops an asymptotic theory of statistical inference in cointegrated vector autoregressive models with nonlinear time trends in cointegrating relations and general nonlinear parameter restrictions. Inference on parameters in cointegrating relations and short-run dynamics is studied separately. It is shown that Gaussian maximum likelihood estimators of parameters in cointegrating relations have mixed normal limiting distributions and that related Wald, Lagrange multiplier, and likelihood ratio tests for general nonlinear hypotheses have usual asymptotic chi-square distributions. These results are shown to hold even if parameters in the short-run dynamics are not identified. In that case suitable estimators of the information matrix have to be used to justify the application of Wald and Lagrange multiplier tests, whereas the likelihood ratio test is free of this difficulty. Similar results are also obtained when inference on parameters in the short-run dynamics is studied, although then Gaussian maximum likelihood estimators have usual normal limiting distributions. All results of the paper are proved without assuming existence of second partial derivatives of the likelihood function, and in some cases even differentiability with respect to nuisance parameters is not required.
- Type
- Research Article
- Information
- Copyright
- © 2001 Cambridge University Press
- 9
- Cited by