Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-tlg78 Total loading time: 0.379 Render date: 2021-05-12T11:18:25.110Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Linear Regression to Minimize the Total Error of the Numerical Differentiation

Published online by Cambridge University Press:  31 January 2018

Jengnan Tzeng
Affiliation:
Department of Mathematical Science, National Chengchi University, Taipei, No. 64, Sec. 2, ZhiNan Rd., Wenshan District, Taipei City 11605, Taiwan (R.O.C)
Corresponding
E-mail address:
Get access

Abstract

It is well known that numerical derivative contains two types of errors. One is truncation error and the other is rounding error. By evaluating variables with rounding error, together with step size and the unknown coefficient of the truncation error, the total error can be determined. We also know that the step size affects the truncation error very much, especially when the step size is large. On the other hand, rounding error will dominate numerical error when the step size is too small. Thus, to choose a suitable step size is an important task in computing the numerical differentiation. If we want to reach an accuracy result of the numerical difference, we had better estimate the best step size. We can use Taylor Expression to analyze the order of truncation error, which is usually expressed by the big O notation, that is, E(h) = Chk. Since the leading coefficient C contains the factor f(k)(ζ) for high order k and unknown ζ, the truncation error is often estimated by a roughly upper bound. If we try to estimate the high order difference f(k)(ζ), this term usually contains larger error. Hence, the uncertainty of ζ and the rounding errors hinder a possible accurate numerical derivative.

We will introduce the statistical process into the traditional numerical difference. The new method estimates truncation error and rounding error at the same time for a given step size. When we estimate these two types of error successfully, we can reach much better modified results. We also propose a genetic approach to reach a confident numerical derivative.

MSC classification

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Barlow, J. L., Numerical aspects of solving linear least squares problems. In Rao, C.R. Computational Statistics. Handbook of Statistics. 9. North-Holland. ISBN 0-444-88096-8, 1993.Google Scholar
[2] Butt, R., Introduction to Numerical Analysis Using MATLAB, Jones & Bartlett Learning, pp. 1118, 2009.Google Scholar
[3] Chapra, S. C. and Canale, R. P., Numerical Methods for Engineers, McGraw-Hill, 7-th Edition, 2015.Google Scholar
[4] Nocedal, J. and Wright, S. J., Numerical Optimization, Springer-Verlag New York, Inc, 1999.CrossRefGoogle Scholar
[5] Richardson, L. F. and Gaunt, J. A., The diferred approach to the limit, Philosophical Transactions of the Royal Society A 226, 299-349, 1927.Google Scholar
[6] Ueberhuber, C. W., Numerical Computation 1: Methods, Software, and Analysis, Springer, pp. 139146, 1997.Google Scholar
[7] Yang, W. Y., Cao, W., Chung, T. S., and Morris, J., Applied Numerical Methods Using MATLAB, John Wiley & Sons, 2005.CrossRefGoogle Scholar
[8] Curtis, A. and Reid, J. The choice of step lengths when using differences to approximate Jacobian matrices, J. Inst. Math. Appl., v. 13, 121126, 1974.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Linear Regression to Minimize the Total Error of the Numerical Differentiation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Linear Regression to Minimize the Total Error of the Numerical Differentiation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Linear Regression to Minimize the Total Error of the Numerical Differentiation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *