Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-z6b88 Total loading time: 0.18 Render date: 2022-11-28T06:39:02.828Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Fast Exponential Time Integration for Pricing Options in Stochastic Volatility Jump Diffusion Models

Published online by Cambridge University Press:  28 May 2015

Hong-Kui Pang*
Affiliation:
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, China
Hai-Wei Sun*
Affiliation:
Department of Mathematics, University of Macau, Macao, China
*
Corresponding author. Email: panghongkui@163.com
Corresponding author. Email: HSun@umac.mo
Get access

Abstract

The stochastic volatility jump diffusion model with jumps in both return and volatility leads to a two-dimensional partial integro-differential equation (PIDE). We exploit a fast exponential time integration scheme to solve this PIDE. After spatial discretization and temporal integration, the solution of the PIDE can be formulated as the action of an exponential of a block Toeplitz matrix on a vector. The shift-invert Arnoldi method is employed to approximate this product. To reduce the computational cost, matrix splitting is combined with the multigrid method to deal with the shift-invert matrix-vector product in each inner iteration. Numerical results show that our proposed scheme is more robust and efficient than the existing high accurate implicit-explicit Euler-based extrapolation scheme.

Type
Research Article
Copyright
Copyright © Global-Science Press 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Andersen, L. and Andreasen, J., Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Derivatives Res. 4, 231262 (2000).CrossRefGoogle Scholar
[2]Barndorff-Nielsen, O., Process of normal inverse Gaussian type, Finance Stoch. 2, 4168 (1998).CrossRefGoogle Scholar
[3]Bates, D., Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options, Rev. Financial Stud. 9, 69107 (1996).CrossRefGoogle Scholar
[4]Black, F. and Scholes, M., The pricing of options and corporate liabilities, J. Polit. Econ. 81, 637654 (1973).CrossRefGoogle Scholar
[5]Briggs, W.L., Henson, V.E., and McCormick, S.F., A Multigrid Tutorial, 2nd edition, SIAM, Philadelphia, 2000.CrossRefGoogle Scholar
[6]Carr, P., Geman, H., Madan, D., and Yor, M., The fine structure of asset returns: An empirical investigation, J. Business 75, 305332 (2002).CrossRefGoogle Scholar
[7]Carr, P. and Wu, L., Finite moment log stable process and option pricing, J. Finance 58, 753777 (2003).CrossRefGoogle Scholar
[8]Chan, R. and Jin, X., An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007.CrossRefGoogle Scholar
[9]d'Halluin, Y., Forsyth, P., and Vetzal, K., Robust numerical methods for contingent claims under jump diffusion, IMA J. Numer. Anal. 25, 87112 (2005).CrossRefGoogle Scholar
[10]Duffie, D., Pan, J., and Singleton, K., Transform analysis and asset pricing for affine jump diffusions, Econometrica 68, 13431376 (2000).CrossRefGoogle Scholar
[11]Eberlein, E., Keller, U., and Prause, K., New insights into smile, mispricing, and value at risk: The hyperbolic model, J. Business 71, 371405 (1998).CrossRefGoogle Scholar
[12]Eiermann, M. and Ernst, O., A restarted Krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal. 44, 24812504 (2006).CrossRefGoogle Scholar
[13]Eraker, B., Johannes, M., and Polson, N., The impact of jumps in volatilityand returns, J. Finance 58, 12691300 (2003).CrossRefGoogle Scholar
[14]Feng, L. and Linetsky, V., Pricing options in jump diffusion models: An extrapolation approach, Oper. Res. 56, 304325 (2008).CrossRefGoogle Scholar
[15]Heston, S., Aclosed form solution for options with stochastic volatility with applications to bond and currencyoptions, Rev. Financial Stud. 6, 327343 (1993).CrossRefGoogle Scholar
[16]Higham, N., Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.CrossRefGoogle Scholar
[17]Hochbruck, M. and Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34, 19111925 (1997).CrossRefGoogle Scholar
[18]Hull, J. and White, A., The pricing of options on assets with stochastic volatilites, J. Finance 42, 281300 (1987).CrossRefGoogle Scholar
[19]Kou, S., A jump diffusion model for option pricing, Management Sci. 48, 10861101 (2002).CrossRefGoogle Scholar
[20]Lee, S., Liu, X., and Sun, H., Fast exponential time integration scheme for option pricing with jumps, Numer. Linear Algebra Appl. 19, 87101 (2012).CrossRefGoogle Scholar
[21]Lee, S., Pang, H. and Sun, H., Shift-invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput. 32, 774792 (2010).CrossRefGoogle Scholar
[22]Lopez, L. and Simoncini, V., Analysis of projection methods for rational function approximation to the matrix exponential, SIAM J. Numer. Anal. 44, 613635 (2006).CrossRefGoogle Scholar
[23]Madan, D., Carr, P., and Chang, E., The variance gamma process and option pricing, Eur. Finance Rev. 2 79105 (1998).CrossRefGoogle Scholar
[24]Merton, R., Option pricing when underlying stock returns are discontinuous, J. Financial Econom. 3, 125144 (1976).CrossRefGoogle Scholar
[25]Moret, I. and Novati, P., RD-rational approximations of the matrix exponential, BIT, 44 (2004), pp. 595615.CrossRefGoogle Scholar
[26]Pang, H. and Sun, H., Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential, Numer. Linear Algebra Appl., 18 (2011), pp. 603614.CrossRefGoogle Scholar
[27]Popolizio, M. and Simoncini, V., Acceleration techniques for approximating the matrix exponential operator, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 657683.CrossRefGoogle Scholar
[28]Rambeerich, N., Tangman, D., Gopaul, A., and Bhuruth, M., Exponential time integration for fast finite element solutions of some financial engineering problems, J. Comput. Appl. Math. 224, 668678 (2009).CrossRefGoogle Scholar
[29]Rubinstein, M., Implied binomial trees, J. Finance 49, 771818 (1994).CrossRefGoogle Scholar
[30]Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29, 209228 (1992).CrossRefGoogle Scholar
[31]Shampine, L., Vectorized adaptive quadrature in Matlab, J. Comput. Appl. Math. 211,131-140 (2008).CrossRefGoogle Scholar
[32]Tangman, D., Gopaul, A., and Bhuruth, M., Exponential time integration and Chebychev discretisation schemes for fast pricing of options, Appl. Numer. Math. 58, 13091319 (2008).CrossRefGoogle Scholar
[33]van den Eshof, J. and Hochbruck, M., Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput. 27, 14381457 (2006).CrossRefGoogle Scholar
[34]Zhang, Y., Pang, H., Feng, L., and Jin, X., Quadratic finite element and preconditioning for options pricing in the SVCJ model, to appear in J. Comput. Finance.Google Scholar
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fast Exponential Time Integration for Pricing Options in Stochastic Volatility Jump Diffusion Models
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fast Exponential Time Integration for Pricing Options in Stochastic Volatility Jump Diffusion Models
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fast Exponential Time Integration for Pricing Options in Stochastic Volatility Jump Diffusion Models
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *