Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-n9pbb Total loading time: 0.162 Render date: 2021-09-16T12:04:33.632Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

An Efficient Numerical Method for Mean Curvature-Based Image Registration Model

Published online by Cambridge University Press:  31 January 2017

Jin Zhang*
Affiliation:
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P R China
Ke Chen*
Affiliation:
Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, University of Liverpool, United Kingdom
Fang Chen*
Affiliation:
School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, P R China
Bo Yu*
Affiliation:
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P R China
*Corresponding
*Corresponding author. Email addresses: zhangjinsunny321@163.com (J. Zhang), k.chen@liv.ac.uk (K. Chen), chenfreesky@126.com (F. Chen), yubo@dlut.edu.cn (B. Yu)
*Corresponding author. Email addresses: zhangjinsunny321@163.com (J. Zhang), k.chen@liv.ac.uk (K. Chen), chenfreesky@126.com (F. Chen), yubo@dlut.edu.cn (B. Yu)
*Corresponding author. Email addresses: zhangjinsunny321@163.com (J. Zhang), k.chen@liv.ac.uk (K. Chen), chenfreesky@126.com (F. Chen), yubo@dlut.edu.cn (B. Yu)
*Corresponding author. Email addresses: zhangjinsunny321@163.com (J. Zhang), k.chen@liv.ac.uk (K. Chen), chenfreesky@126.com (F. Chen), yubo@dlut.edu.cn (B. Yu)
Get access

Abstract

Mean curvature-based image registration model firstly proposed by Chumchob-Chen-Brito (2011) offered a better regularizer technique for both smooth and nonsmooth deformation fields. However, it is extremely challenging to solve efficiently this model and the existing methods are slow or become efficient only with strong assumptions on the smoothing parameter β. In this paper, we take a different solution approach. Firstly, we discretize the joint energy functional, following an idea of relaxed fixed point is implemented and combine with Gauss-Newton scheme with Armijo's Linear Search for solving the discretized mean curvature model and further to combine with a multilevel method to achieve fast convergence. Numerical experiments not only confirm that our proposed method is efficient and stable, but also it can give more satisfying registration results according to image quality.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Acar, R. and Vogel, C.R., Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10(6), pp. 12171229, 1994.CrossRefGoogle Scholar
[2] Bai, Z.-Z., Huang, Y.-M. and Ng, M.K., On preconditioned iterative methods for Burgers equations, SIAM Journal on Scientific Computing, 29(1), pp. 415439, 2007.CrossRefGoogle Scholar
[3] Bai, Z.-Z., Huang, Y.-M. and Ng, M.K., On preconditioned iterative methods for certain time-dependent partial differential equations, SIAM Journal on Numerical Analysis, 47(2), pp. 10191037, 2009.CrossRefGoogle Scholar
[4] Bai, Z.-Z. and Ng, M.K., On inexact preconditioners for nonsymmetric matrices, SIAM Journal on Scientific Computing, 26(5), pp. 17101724, 2005.CrossRefGoogle Scholar
[5] Bai, Z.-Z., Ng, M.K. and Wang, Z.-Q., Constraint preconditioners for symmetric indefinite matrices, SIAM Journal on Matrix Analysis and Applications, 31(2), pp. 410433, 2009.CrossRefGoogle Scholar
[6] Brown, L.G., A survey of image registration techniques, ACM Computing Surveys, 24(4), pp. 325376, 1992.CrossRefGoogle Scholar
[7] Chan, T.F., Chen, K. and Carter, J.L., Iterative methods for solving the dual formulation arising fromimage restoration, Electronic Transactions on Numerical Analysis, 26, pp. 299311, 2007.Google Scholar
[8] Chan, T.F. and Shen, J.-H., Image Processing and Analysis-Variational, PDE, Wavelet, and Stochastic Methods, SIAM, Philadelphia, 2005.Google Scholar
[9] Chen, H.-M., Arora, M.K. and Varshney, P.K., Mutual information based image registration for remote sensing data, International Journal of Remote Sensing, 24(18), pp. 37013706, 2003.CrossRefGoogle Scholar
[10] Chen, K., Matrix Preconditioning Techniques and Applications, Cambridge University Press, UK, 2005.CrossRefGoogle Scholar
[11] Chen, K. and Tai, X.-C., A nonlinear multigrid method for total variation minimization from image restoration, Journal of Scientific Computing, 32(2), pp. 115138, 2007.CrossRefGoogle Scholar
[12] Chumchob, N. and Chen, K., A robust multigrid approach for variational image registration models, Journal of Computational and Applied Mathematics, 236(5), pp. 653674, 2011.CrossRefGoogle Scholar
[13] Chumchob, N., Chen, K. and Brito-Loeza, C., A fourth order variational image registration model and its fast multigrid algorithm, Multiscale Modeling and Simulation, 9(1), pp. 89128, 2011.CrossRefGoogle Scholar
[14] Fischer, B. and Modersitzki, J., Curvature based image registration, Journal of Mathematical Imaging and Vision, 18(1), pp. 8185, 2003.CrossRefGoogle Scholar
[15] Frohn-Schauf, C., Henn, S., Hömke, L. and Witsch, K., Total variation based image registration, in Proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems Series: Mathematics and Visualization, Springer-Verlag, pp. 305323, 2006.Google Scholar
[16] Frohn-Schauf, C., Henn, S. and Witsch, K., Multigrid based total variation image registration, Computing and Visualization in Science, 11(2), pp. 101113, 2008.CrossRefGoogle Scholar
[17] Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization, Academic Press, London, 1981.Google Scholar
[18] Gratton, S., Lawless, A.S. and Nichols, N.K., Approximate Gauss-Newton methods for nonlinear least squares problems, SIAM Journal on Optimization, 18(1), pp. 106132, 2007.CrossRefGoogle Scholar
[19] Haber, E., Heldmann, S. and Modersitzki, J., Adaptive mesh refinement for non parametric image registration, SIAM Journal on Scientific Computing, 30(6), pp. 30123027, 2008.CrossRefGoogle Scholar
[20] Haber, E., Heldmann, S. and Modersitzki, J., A computational framework for image-based constrained registration, Linear Algebra and its Applications, 431(3–4), pp. 459470, 2009.CrossRefGoogle Scholar
[21] Haber, E., Horesh, R. and Modersitzki, J., Numerical optimization for constrained image registration, Numerical Linear Algebra with Applications, 17(2-3), pp. 343359, 2010.Google Scholar
[22] Haber, E. and Modersitzki, J., Numerical methods for volume preserving image registration, Inverse Problems, 20, pp. 16211638, 2004.CrossRefGoogle Scholar
[23] Haber, E. and Modersitzki, J., A multilevel method for image registration, SIAM Journal on Scientific Computing, 27(5), pp. 15941607, 2006.CrossRefGoogle Scholar
[24] Hajnal, J.V., Hawkes, D.J. and Hill, D.L.G., Medical Image Registration, The Biomedical Engineering Series, CRC Press, 2001.CrossRefGoogle Scholar
[25] Henn, S., A multigrid method for a fourth-order diffusion equation with application to image processing, SIAM Journal on Scientific Computing, 27(3), pp. 831849, 2005.CrossRefGoogle Scholar
[26] Köstler, H., Ruhnau, K. and Wienands, R., Multigrid solution of the optical flow system using a combined diffusion- and curvature-based regularizer, Numerical Linear Algebra with Applications, 15(2-3), pp. 201218, 2008.CrossRefGoogle Scholar
[27] Maintz, J.B.A. and Viergever, M.A., A survey of medical image registration, Medical Image Analysis, 2(1), pp. 136, 1998.CrossRefGoogle Scholar
[28] Modersitzki, J., Numerical Methods for Image Registration, Oxford University Press, New York, 2004.Google Scholar
[29] Modersitzki, J., FAIR: Flexible Algorithms for Image Registration, SIAM, Philadelphia, 2009.CrossRefGoogle Scholar
[30] Nocedal, J. and Wright, S.J., Numerical Optimization, Springer-Verlag, New York, 1999.CrossRefGoogle Scholar
[31] Rudin, L., Osher, S. and Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60(1-4), pp. 259268, 1992.CrossRefGoogle Scholar
[32] Savage, J. and Chen, K., An improved and accelerated nonlinear multigrid method for total-variation denoising, International Journal of Computer Mathematics, 82(8), pp. 10011015, 2005.CrossRefGoogle Scholar
[33] Sorzano, C., Thévenaz, P. and Unser, M., Elastic registration of biological, images using vector-spline regularization, IEEE Transactions On Biomedical Engineering, 52(4), pp. 652663, 2005.CrossRefGoogle ScholarPubMed
[34] Stürmer, M., Köstler, H. and Rüde, U., A fast full mulitigrid solver for applications in image processing, Numerical Linear Algebra with Applications, 15(2-3), pp. 187200, 2008.CrossRefGoogle Scholar
[35] Thévenaz, P. and Unser, M., Optimization of mutual information for multiresolution image registration, IEEE Transactions on Image Processing, 9(12), pp. 20832099, 2000.Google ScholarPubMed
[36] Vogel, C.R., Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.CrossRefGoogle Scholar
[37] Vogel, C.R. and Oman, M.E., Iterative methods for total variation denoising, SIAM Journal on Scientific Computing, 17(1), pp. 227238, 1996.CrossRefGoogle Scholar
4
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An Efficient Numerical Method for Mean Curvature-Based Image Registration Model
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An Efficient Numerical Method for Mean Curvature-Based Image Registration Model
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An Efficient Numerical Method for Mean Curvature-Based Image Registration Model
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *