Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-zkswk Total loading time: 0.351 Render date: 2022-11-28T09:56:20.577Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Origin of chert in the Upper Ordovician–Lower Silurian: implications for the sedimentary environment of North Qilian Orogen

Published online by Cambridge University Press:  05 March 2021

Qian HOU
Affiliation:
Chengdu Center of China Geological Survey, Sichuan Chengdu, 610081, PR China Shandong University of Science and Technology, Shandong Qingdao, 266590, PR China
Chuanlong MOU*
Affiliation:
Chengdu Center of China Geological Survey, Sichuan Chengdu, 610081, PR China Shandong University of Science and Technology, Shandong Qingdao, 266590, PR China
Zuozhen HAN
Affiliation:
Shandong University of Science and Technology, Shandong Qingdao, 266590, PR China
Xiangying GE
Affiliation:
Chengdu Center of China Geological Survey, Sichuan Chengdu, 610081, PR China
Qiyu WANG
Affiliation:
Chengdu Center of China Geological Survey, Sichuan Chengdu, 610081, PR China Shandong University of Science and Technology, Shandong Qingdao, 266590, PR China
*
*Corresponding author. Email: chuanlongmu@126.com

Abstract

During the Upper Ordovician–Lower Silurian, chert was widely distributed in the Zhongbao Formation in the eastern part of the North Qilian Orogen. The origin and the tectonic setting of these chert were largely unknown. In order to analyse the material provenance, sedimentary environment, their formation and the tectonic setting, we present petrology and geochemical research on chert samples collected from Shihuigou Section. The evidence provided by radiolarite occurrences, Aluminium (Al)–iron (Fe)–manganese diagram and the silicon(Si)/Si + Al + Fe + calcium ratios suggesting a non-hydrothermal input and the biogenic origin chert. The geochemical features and the petrographic signatures have shown that the chert was also influenced by a terrigenous origin. It is considered that the deposition of the Late Ordovician chert is mainly affected by tectonic collision and volcanic ash events. During the Late Ordovician–Early Silurian transition, huge amounts of volcanic ash were released by massive volcanic activity that fell into the ocean, triggering the proliferation of radiolarians. Finally, in the Late Ordovician–Lower Silurian the tectonic setting of the North Qilian Orogen was not a typical deep-water basin, nor a typical continental margin, but a multi-island deep-water basin, which is closed to the mainland.

Type
Articles
Copyright
Copyright © The Author(s) 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Adachi, M., Yamamoto, K. & Sugisaki, R. 1986. Hydrothermal chert and associated chert from the northern Pacific: their geological significance and indication of ocean ridge activity. Sedimentary Geology 47, 125–48.10.1016/0037-0738(86)90075-8CrossRefGoogle Scholar
Algeo, T. J., Marenco, P. J. & Saltzman, M. R. 2016. Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 458, 111.CrossRefGoogle Scholar
Armstrong-Altrin, J. S., Nagarajan, R., Madhacaraju, J., Rosalez-Hoz, L., Lee, Y. I., Balaram, V., Cruz-Martinez, A. & Avila-Ramirez, G. 2013. Geochemistry of the Jurassic and upper cretaceous shales from the Molango region, Hidalgo, Eastern Mexico: implications of source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience 345, 185202.CrossRefGoogle Scholar
Armstrong-Altrin, J. S., Nagarajan, R., Balaram, V. & Natalhy-Pineda, O. 2015. Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. Journal of South American Earth Sciences 64, 199216.10.1016/j.jsames.2015.10.012CrossRefGoogle Scholar
Bai, J., Wang, H. L., Zhu, X. H. & Xie, C. R. 2016. Characteristics of olistostromes from the Ordovician Zhongbao Group in Shihuigou area, North Qilian orogenic belt and their palaeogeographic implications. Geology in China 43, 977–86.Google Scholar
Bak, M. & Sawlowicz, Z. 2000. Pyritized Radiolarians from the Mid-Cretaceous deposits of the Pieniny Klippen Belt – a model of pyritization in an anoxic environment. Geologica Carpathica 51, 9199.Google Scholar
Basu, A. R., Sharma, M. & DeCelles, P. G. 1990. Nd, Sr-isotopic provenance and trace element geochemistry of Amazonian foreland basin fluvial sands, Bolivia and Peru: implications for ensialic Andean orogeny. Earth and Planetary Science Letters 100, 117.10.1016/0012-821X(90)90172-TCrossRefGoogle Scholar
Brenchley, P. J. 1988. Environmental changes close to the Ordovician–Silurian boundary. Bulletin of the British Museum (Natural History). Geology 43, 377–85.Google Scholar
Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T. & Nõlvak, J. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin 115, 89104.10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Chen, M. H., Zhang, L. L., Zhang, L. L., Xiang, R. & Lu, J. 2008. Preservation of radiolarian diversity and abundance in surface sediments of the South China sea and its environmental implication. Journal of China University of Geosciences 19, 217–29.Google Scholar
Chen, X., Rong, J., Li, Y. & Boucot, A. J. 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 353–72.Google Scholar
Chen, X., Fan, J., Melchin, M. J. & Mitchell, C. E. 2005. Hirnantian (Latest Ordovician) graptolites from the Upper Yangtze region, China. Palaeontology 48, 235–80.Google Scholar
Chen, X., Rong, J. Y., Fan, J. X., Zhan, R. B., Mitchell, C. E., Harper, D. A. T. & Wang, X. F. 2006. The global boundary Stratotype section and point (GSSP) for the base of the Hirnantian stage (the uppermost of the Ordovician system). Episodes 29, 183196.10.18814/epiiugs/2006/v29i3/004CrossRefGoogle Scholar
Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104, 137.10.1016/0009-2541(93)90140-ECrossRefGoogle Scholar
Cooper, R. A., Sadler, P. M., Hammer, O. & Gradstein, F. M. 2012. The Ordovician period. The geologic time scale, 489523.10.1016/B978-0-444-59425-9.00020-2CrossRefGoogle Scholar
De Wever, P., Azéma, J. & Fourcade, E. 1994. Radiolaires et radiolarites: production primaire, diagenése et paléogéographie. Bulletin Des Centres De Recherches Exploration-Production Elf Aquitaine 18, 315–79.Google Scholar
Delabroye, A. & Vecoli, M. 2010. The end-Ordovician glaciation and the Hirnantian Stage: a global review and questions about Late Ordovician event stratigraphy. Earth-Science Reviews 98, 269–82.CrossRefGoogle Scholar
Dennett, M. R., Caron, D. A., Michaels, A. F., Gallager, S. M. & Davis, C. S. 2002. Video plankton recorder reveals high abundances of colonial radiolaria in surface waters of the central North Pacific. Journal of Plankton Research 24, 797805.10.1093/plankt/24.8.797CrossRefGoogle Scholar
Dong, Y. P. & Santosh, M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, central China. Gondwana Research 29, 140.10.1016/j.gr.2015.06.009CrossRefGoogle Scholar
Du, Y. S., Zhu, J., Han, X. & Gu, S. Z. 2004. From the back-arc basin to foreland basin – Ordovician–Devonian sedimentary basin and tectonic evolution in the North Qilian orogenic belt. Geological Bulletin of China 23, 911–17.Google Scholar
Du, Y. S., Zhu, J. & Gu, S. Z. 2006. Sedimentary geochemistry of cherts from the middle-upper Ordovician in Shihuigou area, North Qilian Orogenic belt and its tectonic implications. Geological Review 52, 184–89. [In Chinese with English abstract.]Google Scholar
Du, Y. S., Zhu, J. & Gu, S. Z. 2007. Sedimentary geochemistry of the Cambrian–Ordovician cherts: implication on archipelagic ocean of the North Qilian orogenic belt. Science in China Series D Earth Sciences 37, 1314–29.Google Scholar
Du, Y. S. & Guang, R. S. 2003. Permian stratigraphy, sedimentary environments and basin evolution of southern Sydney basin in eastern Australia. Journal of Palaeogeography 5, 142–51.Google Scholar
Fan, J., Peng, P. A. & Melchin, M. J. 2009. Carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Yichang, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 160–69.10.1016/j.palaeo.2009.03.007CrossRefGoogle Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–24.2.3.CO;2>CrossRefGoogle Scholar
Fedo, C. M., Eriksson, K. & Krogstad, E. J. 1996. Geochemistry of shales from the Archean (−3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source area weathering. Geochimica et Cosmochimica Acta 60, 1751–63.CrossRefGoogle Scholar
Feng, Q. L. 1992. A preliminary study on the radiolarian palaeoecology. Geological Science and Technology Information 11, 4146. [In Chinese with English abstract.]Google Scholar
Feng, Y. M. & He, S. P. 1995. Research for geology and geochemistry of several ophiolites in the North Qilian Mountains, China. Geological Review 40, 252–64. [In Chinese with English abstract.]Google Scholar
Feng, Y. M. & He, S. P. 1996. Tectonics and orogenesis of Qilian mountains, 10135. Beijing: Geological Publishing House. [In Chinese.]Google Scholar
Floyd, P. A. & Leveridge, B. E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society 144, 531–42.10.1144/gsjgs.144.4.0531CrossRefGoogle Scholar
Garbán, G., Martinez, M., Márquez, G., Rey, O., Escobar, M. & Esquinas, N. 2017. Geochemistry signatures of bedded cherts of the upper La Luna Formation in Táchira State, western Venezuela: assessing material provenance and paleodepositional setting. Sedimentary Geology 347, 130–47.10.1016/j.sedgeo.2016.11.001CrossRefGoogle Scholar
Ge, X. Y., Mou, C. L., Wang, C. S., Men, X., Chen, C. & Hou, Q. 2018. Mineralogical and geochemical characteristics of K-bentonites from the Late Ordovician to the Early Silurian in South China and their geological significance. Geological Journal 54, 514–28.10.1002/gj.3201CrossRefGoogle Scholar
Gehrels, G. E., Yin, A. & Wang, X. F. 2003. Detrital zircon geochronology of the northeastern Tibetan plateau. Geological Society of America Bulletin 115, 881–96.2.0.CO;2>CrossRefGoogle Scholar
Girty, G. H., Ridge, D. L., Knaack, C., Johnson, D. & Al-Riyami, R. K. 1996. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research 66, 107–18.Google Scholar
Gromet, L. P., Dymek, R. F., Haskin, R. A. & Korotev, R. L. 1984. The North American shale composite: its complication, major and trace element characteristics. Geochimica et Cosmochimica Acta 48, 24693482.10.1016/0016-7037(84)90298-9CrossRefGoogle Scholar
Guo, X. Y., Gao, R., Li, S. Z., Xu, X., Huang, X. F., Wang, H. Y., Li, W. H., Zhao, S. J. & Li, X. Y. 2016. Lithospheric architecture and deformation of NE Tibet: new insights on the interplay of regional tectonic processes. Earth and Planetary Science Letters 449, 8995.10.1016/j.epsl.2016.05.045CrossRefGoogle Scholar
Hall, R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Science 20, 353431.10.1016/S1367-9120(01)00069-4CrossRefGoogle Scholar
Hamme, R. C., Webley, P. W., Crawford, W. R., Whitney, F. A., DeGrandpre, M. D., Emerson, S. R. & Peña, M. A. 2010. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophysical Research Letters 37, 15.10.1029/2010GL044629CrossRefGoogle Scholar
Hiscott, R. N. 1984. Ophiolitic source rocks for Taconic-age flysch: trace-element evidence. Geological Society of America Bulletin 95, 1261–76.2.0.CO;2>CrossRefGoogle Scholar
Hou, Q., Mou, C. L., Wang, Q. Y. & Tan, Z. Y. 2018a. Provenance and tectonic setting of the Early and Middle Devonian Xueshan Formation, the North Qilian Orogen, China. Geological Journal 53, 1404–22.CrossRefGoogle Scholar
Hou, Q., Mou, C. L., Wang, Q. Y., Tan, Z. Y., Ge, X. Y. & Wang, X. P. 2018b. Geochemistry of sandstones from the Silurian Hanxia Formation, North Qilian Orogen, China: implication for provenance, weathering and tectonic Setting. Geochemistry International 56, 362–77.10.1134/S0016702918040092CrossRefGoogle Scholar
Hou, Q., Mou, C. L., Han, Z. Z., Wang, Q. Y. & Tan, Z. Y. 2020. Petrography and geochemistry of the Lower Silurian sandstones from the Angzanggou Formation in the North Qilian Orogen, China: implications for provenance, weathering and tectonic setting. Geological Magazine 157, 477–96.10.1017/S0016756819000931CrossRefGoogle Scholar
Kato, Y., Nakao, K. & Isozaki, Y. 2002. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chemical Geology 182, 1534.10.1016/S0009-2541(01)00273-XCrossRefGoogle Scholar
Kunimaxu, T., Shimiuz, H., Takahashi, K. & Yabuki, S. 1998. Differences in geochemical features between Permian and Triassic cherts from the Southern Chichibu terrane, southwest Japan: REE abundances, major element compositions and Sr isotopic ratios. Sedimentary Geology 119, 195217.10.1016/S0037-0738(98)00046-3CrossRefGoogle Scholar
Lei, Z. H., Dashtgard, S. E., Wang, J., Li, M., Feng, Q. L., Yu, Q., Zhao, A. K. & Du, L. T. 2019. Origin of chert in Lower Silurian Longmaxi Formation: implications for tectonic evolution of Yangtze Block, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 529, 5366.CrossRefGoogle Scholar
Li, S. Z., Kusky, T. M., Wang, L., Zhang, G. W., Lai, S. C., Liu, X. C., Dong, S. W. & Zhao, G. C. 2007. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: insights from the Mianlue suture. Gondwana Research 12, 121–43.CrossRefGoogle Scholar
Li, S. Z., Jahn, B. M., Zhao, S. J., Dai, L. M., Li, X. Y., Suo, Y. H., Guo, L. L., Wang, Y. M., Liu, X. C., Lan, H. Y., Zhou, Z. Z., Zheng, Q. L. & Wang, P. C. 2017a. Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data. Earth-Science Reviews 166, 270–85.10.1016/j.earscirev.2017.01.009CrossRefGoogle Scholar
Li, Y., Zhang, T., Ellis, G. S. & Shao, D. 2017b. Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 466, 252–64.10.1016/j.palaeo.2016.11.037CrossRefGoogle Scholar
Li, X. Y., Zheng, J. P., Xiong, Q., Zhou, X. & Xiang, L. 2018. Triassic rejuvenation of unexposed Archean-Paleoproterozoic deep crust beneath the western Cathaysia block South China. Tectonophysics 724, 6579.CrossRefGoogle Scholar
Liu, S. G., Ma, W. X., Jansa, L., Huang, W. M., Zeng, X. L. & Zhang, C. J. 2013. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China. Energy Exploration & Exploitation 31, 187219.10.1260/0144-5987.31.2.187CrossRefGoogle Scholar
Lüning, S., Craig, J., Loydell, D. K., Torch, P., Štorch, P. & Fitches, B. 2000. Lower Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model. Earth Science Reviews 49, 121200.CrossRefGoogle Scholar
Lüning, S., Shahin, Y. M., Loydell, D. K., Al-Rabi, H. T., Masri, A., Tarawneh, B. & Kolonic, S. 2005. Anatomy of a world-class source rock: distribution and depositional model of Silurian organic-rich shales in Jordan and implications for hydrocarbon potential. AAPG Bulletin 89, 1397–427.CrossRefGoogle Scholar
Madhavaraju, J. 2015. Geochemistry of late Cretaceous sedimentary rocks of the Cauvery Basin, south India: constraints on paleoweathering, provenance, and end Cretaceous environments. Chemostratigraphy 124, 185214.10.1016/B978-0-12-419968-2.00008-XCrossRefGoogle Scholar
McLennan, S. M., Taylor, S. R. & Erikkson, K. A. 1983. Geochemistry Archean shales from the Pilbara Supergroup, Western Australia. Geochemica et Cosmochimica Acta 47, 1211–22.10.1016/0016-7037(83)90063-7CrossRefGoogle Scholar
McLennan, S. M., Taylor, S. R., McCulloch, M. T. & Maynard, J. B. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta 54, 2015–50.CrossRefGoogle Scholar
McLennan, S. M., Hemming, S., McDaniel, D. K. & Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers – Geological Society of America 284, 2140.CrossRefGoogle Scholar
Melchin, M. J., Mitchell, C. E., Holmden, C. & Štorch, P. 2013. Environmental changes in the Late Ordovician–Early Silurian: review and new insights from black shales and nitrogen isotopes. GSA Bulletin 125, 1635–70.10.1130/B30812.1CrossRefGoogle Scholar
Men, X., Mou, C. L., Ge, X. Y. & Wang, Y. C. 2020. Geochemical characteristics of chert of Wufeng Formation in the Late Ordovician, South China: assessing provenance, depositional environment, and formation model. Geological Journal 55, 2930–50.10.1002/gj.3553CrossRefGoogle Scholar
Metcalfe, I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research 9, 2446.10.1016/j.gr.2005.04.002CrossRefGoogle Scholar
Miskell, K. J., Brass, G. W. & Harrison, C. G. A. 1985. Global patterns in opal deposition from Late Cretaceous to Late Miocene. AAPG Bulletin 69, 9961012.Google Scholar
Murray, R. W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology 90, 213–32.CrossRefGoogle Scholar
Murray, R. W., ten Brink, M. R., Jones, D. L., Gerlach, D. C. & Russ, G. P III. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology 18, 268–71.2.3.CO;2>CrossRefGoogle Scholar
Murray, R. W., Ten Brink, M. R. B., Gerlach, D. C., Russ, G. P. III & Jones, D. L. 1991. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta 55, 1875–95.CrossRefGoogle Scholar
Murray, R. W., Buchholtzten Birnk, M. R., Gerlach, D. C., Russ, D. P. & Jones, D.L. 1992. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: perspectives gained from the DSDP and ODP record. Geochimica et Cosmochimica Acta 56, 1897–913.CrossRefGoogle Scholar
Nozaki, Y., Zhang, J. & Amakawa, H. 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters 148, 329–40.10.1016/S0012-821X(97)00034-4CrossRefGoogle Scholar
Owen, A. W., Armstrong, H. A. & Floyd, J. D. 1999. Rare earth elements in chert clasts as provenance indicators in the Ordovician and Silurian of the Southern Uplands of Scotland. Sedimentary Geology 124, 185–95.10.1016/S0037-0738(98)00127-4CrossRefGoogle Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94.10.1016/S0009-2541(97)00150-2CrossRefGoogle Scholar
Qian, Q., Zhang, Q., Sun, X. M. & Wang, Y. M. 2001. Geochemical features and tectonic setting for basalts and cherts from Laohushan, North Qilian. Chinese Journal of Geology 36, 444–53. [In Chinese with English abstract.]Google Scholar
Ran, B., Liu, S., Jansa, L., Sun, W., Yang, D., Ye, Y. & Zhang, C. 2015. Origin of the Upper Ordovician–Lower Silurian cherts of the Yangtze block, South China, and their palaeogeographic significance. Journal of Asian Earth Sciences 108, 117.CrossRefGoogle Scholar
Reolid, M. 2014. Pyritized radiolarians and siliceous sponges from oxygen-restricted deposits (Lower Toarcian, Jurassic). Facies 60, 789–99.10.1007/s10347-014-0404-6CrossRefGoogle Scholar
Roser, B. P. & Korsch, R. J. 1988. Provenance signatures of sandstone mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology 67, 119–39.CrossRefGoogle Scholar
Ruiz-Ortiz, P. A., Bustillo, M. A. & Molina, J. M. 1989. Radiolarite sequences of the Subbetic, Betic Cordillera, southern Spain. In Hein, J. R. & Obradovic, J. (eds) Siliceous deposits of the Tethys and Pacific regions, 107–27. New York, NY: Springer-Verlag.10.1007/978-1-4612-3494-4_8CrossRefGoogle Scholar
Saltzman, M. R. & Young, S. A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33, 109–12.10.1130/G21219.1CrossRefGoogle Scholar
Shields, G. & Stille, P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology 175, 2948.CrossRefGoogle Scholar
Song, S. G., Niu, Y. & Zhang, L. F. 2009. Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China: new perspectives. Journal of Asian Earth Sciences 35, 334–53.10.1016/j.jseaes.2008.11.005CrossRefGoogle Scholar
Song, S. G., Niu, Y. L., Su, L. & Xia, X. H. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Research 23, 1378–401.CrossRefGoogle Scholar
Su, W. B., Huff, W. D., Ettensohn, F. R., Liu, X. M., Zhang, J. E. & Li, Z. M. 2009. K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research 15, 111–30.10.1016/j.gr.2008.06.004CrossRefGoogle Scholar
Suigtani, K., Yamamoto, K., Wada, H., Binu-Lal, S. S. & Yoneshige, M. 2002. Geoehemisty of Archen carbonaceous cherts deposited at immature island-arc setting in the Pilbara Block, Western Australia. Sedimentary Geology 151, 4566.10.1016/S0037-0738(01)00230-5CrossRefGoogle Scholar
Tao, Z. Z., Yan, S. S. & Lu, G. P. 1986. The oceanic atomic Clarke value and the abundance of isotope of chemical element in the oceanic water. Minerals and Rocks 6, 143–52. [In Chinese with English abstract.]Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The continental crust: its composition and evolution. Oxford: Blackwell.Google Scholar
Technical Committee for Standardization of Petroleum Geological Exploration. 2010. SY/T 5163-2010 analysis method for clay minerals and ordinary non. Clay minerals in sedimentary rocks by the X-ray diffraction. Beijing: China Standards Press. [In Chinese.]Google Scholar
Wang, N., Wu, C. L., Li, M. & Chen, H. J. 2018. Petrogenesis and tectonic implications of the Early Paleozoic granites in the western segment of the North Qilian orogenic belt, China. Lithos 312313, 89–107.Google Scholar
Wang, Q. C., Yan, D. T. & Li, S. J. 2008. Tectonic-environmental model of the Lower Silurian high-quality hydrocarbon source rocks from South China. Acta Geologica Sinica 82, 289–97. [In Chinese with English abstract.]Google Scholar
Wang, Y. C. 2013. Geological characteristics and tectonic significance of Caledonian collision-post collision type granite at the conjunction of Qinling and Qilian. Master Thesis, Chang'an University, China. [In Chinese with English abstract.]Google Scholar
Webb, G. E., Nothdurft, L. D., Kamber, B. S., Kloprogge, J. T. & Zhao, J. X. 2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology 56, 1433–63.10.1111/j.1365-3091.2008.01041.xCrossRefGoogle Scholar
Wen, H. J., Fan, H. F., Tian, S. H., Wang, Q. L. & Hu, R. Z. 2016. The formation conditions of the early Ediacaran cherts, South China. Chemical Geology 430, 4569.10.1016/j.chemgeo.2016.03.005CrossRefGoogle Scholar
Wu, H. R. 1986. Radiolarian rocks and their geological significance. Foreign Geological 7, 14. [In Chinese with English abstract.]Google Scholar
Xia, L. Q., Xia, Z. C. & Xu, X. Y. 1996. Origin of marine volcanic rocks in north Qilian mountains, 1153. Beijing: Geological Publishing House. [In Chinese.]Google Scholar
Xia, L. Q., Xia, Z. C. & Xu, X. Y. 1998. Early Paleozoic mid-ocean ridge – ocean island and back-arc basin volcanism in the north Qilian mountains. Acta Geologica Sinica 72, 301–12. (In Chinese with English abstract.]Google Scholar
Xia, L. Q., Xia, Z. C. & Xu, X. Y. 2003. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China. Geological Society of America Bulletin 115, 1510–22.10.1130/B25269.1CrossRefGoogle Scholar
Xiao, W. J., Brian, F. W. & Yong, Y. 2009. Early Paleozoic to Devonian multipleaccretionary model for the Qilian Shan, NW China. Journal of Asian Earth Science 35, 323–33.10.1016/j.jseaes.2008.10.001CrossRefGoogle Scholar
Xu, M. J., Zhao, P. Y., Lan, R., Wu, Y. W., Xiao, X. & Zhang, J. B. 2020. Geochemical characteristics and sedimentary environments of siliceous in the middle and western parts of the Shiquanhe-Yongzhu-Jiali tectonic belt. Earth Science Frontiers 27, 19.Google Scholar
Xu, X. Y., Zhao, J. T., Xia, L. Q. & Xia, Z. C. 2003. Tectonic setting implications of rare earth elements in early Paleozoic chert from the Northern Qilian Mountains. Geological Review 49, 605–09. [In Chinese with English abstract.]Google Scholar
Xu, Z. Q., Xu, H. F., Zhang, J. X., Li, H. B., Zhu, Z. Z., Qu, J. C., Chen, D. Z., Chen, J. L. & Yang, K. C. 1994. The Zoulangnanshan Caledonian subductive complex in the northern Qilian Mountains and its dynamics. Acta Geologica Sinica 68, 115. [In Chinese with English abstract.]Google Scholar
Yamamoto, K. 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terrances. Sedimentary Geology 52, 65108.CrossRefGoogle Scholar
Yan, D., Chen, D., Wang, Q., Wang, J. & Chu, Y. 2008a. Environment redox changes of the Yangtze Sea during the Ordo-Silurian transition. Acta Geologica SinicaEnglish Edition 82, 679–89.Google Scholar
Yan, D. T., Chen, D. Z., Wang, Q. C. & Wang, J. G. 2009. Geochemical changes across the Ordovician–Silurian transition on the Yangtze Platform, South China. Science China Earth Sciences 52, 3854.10.1007/s11430-008-0143-zCrossRefGoogle Scholar
Yan, Z., Xiao, W. J., Wang, Z. Q. & Li, J. L. 2007. Integrated analyses constraining the provenance of sandstones, mudstones, and conglomerates, a case study: the Laojunshan conglomerate, Qilian orogen, northwest China. Canadian Journal of Earth Sciences 44, 961–86.10.1139/e07-010CrossRefGoogle Scholar
Yan, Z., Li, J. L., Yong, Y., Xiao, W. J., Wang, Z. Q. & Xiang, Y. S. 2008b. Tectonic environment of Ordovician carbonate-chert in the Shihuigou area, North Qilian orogen. Acta Petrologica Sinica 24, 2384–94. [In Chinese with English abstract.]Google Scholar
Yan, Z., Xiao, W. J., Windley, B. F., Wang, Z. Q. & Li, J. L. 2010. Silurian clastic sediments in the North Qian Shan, NW China: chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau. Sedimentary Geology 231, 98114.CrossRefGoogle Scholar
Yu, S. Y., Zhang, J. X., Del Real, P. G., Zhao, X. L., Hou, K. J., Gong, J. H. & Li, Y. S. 2013. The Grenvillian orogeny in the Altun–Qilian–North Qaidam mountain belts of northern Tibet Plateau: constraints from geochemical and zircon U–Pb age and Hf isotopic study of magmatic rocks. Journal of Asian Earth Sciences 73, 372–95.10.1016/j.jseaes.2013.04.042CrossRefGoogle Scholar
Yuan, W. & Yang, Z. Y. 2015. Late Devonian closure of the North Qilian Ocean: evidence from detrital zircon U–Pb geochronology and Hf isotopes in the eastern North Qilian Orogenic Belt. Geology Review 1, 117.Google Scholar
Zhang, J. X., Xu, Z. Q., Xu, H. F. & Li, H. B. 1998. Framework of North Qilian Caledonian subduction accretionary wedge and its deformation dynamics. Scientia Geologica Sinica 33, 290–99.Google Scholar
Zhan, R. B. & Jin, J. S. 2007. Ordovician-Early Silurian (Llandovery) stratigraphy and paleogeography of the Upper Yangtze Platform, South China. Beijing: Science Press. [In Chinese.]Google Scholar
Zhang, J. X., Yu, S. Y., Li, Y. S., Yu, X. X., Lin, Y. H. & Mao, X. H. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica 31, 3531–54. [In Chinese with English abstract.]Google Scholar
Zhang, J. X., Yu, S. Y. & Mattinson, C. G. 2017. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Research 41, 267–89.10.1016/j.gr.2015.11.009CrossRefGoogle Scholar
Zhang, Q., Sun, X. M. & Zhou, D. J. 1997. The characteristics of North Qilian ophiolites, forming settings and their tectonic significance. Advances in Earth Science 12, 366–93. [In Chinese with English abstract.]Google Scholar
Zheng, J. P., Griffin, W. L., Sun, M., O'Reilly, S. Y., Zhang, H. F., Zhou, H. W., Xiao, L., Tang, H. Y. & Zhang, Z. H. 2010. Tectonic affinity of the west Qinling terrane (Central China): North China or Yangtze? Tectonics 29, 339–41.10.1029/2008TC002428CrossRefGoogle Scholar
Zhou, L., Algeo, T. J., Shen, J., Hu, Z., Gong, H., Xie, S. & Gao, S. 2015. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 420, 223–34.10.1016/j.palaeo.2014.12.012CrossRefGoogle Scholar
Zhou, L. & Kyte, F. T. 1992. Sedimentation history of the South Pacific pelagic clay province over the last 85 million years inferred from the geochemistry of deep-sea drilling project hole 596. Paleoceanography 7, 441–65.10.1029/92PA01063CrossRefGoogle Scholar
Zuo, G. & Liu, J. 1987. The evolution of tectonic of early Paleozoic in North Qilian range, China. Scientia Geologica Sinica 1, 1424. [In Chinese with English abstract.]Google Scholar
Zuo, G. C. & Wu, H. Q. 1997. A bisubduction-collision orogenic model of Early-Paleozoic in the middle part of North Qilian area. Advances in Earth Science 12, 315–22. [In Chinese with English abstract.]Google Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Origin of chert in the Upper Ordovician–Lower Silurian: implications for the sedimentary environment of North Qilian Orogen
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Origin of chert in the Upper Ordovician–Lower Silurian: implications for the sedimentary environment of North Qilian Orogen
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Origin of chert in the Upper Ordovician–Lower Silurian: implications for the sedimentary environment of North Qilian Orogen
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *