Hostname: page-component-797576ffbb-lm8cj Total loading time: 0 Render date: 2023-12-07T02:03:06.777Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Active vibration isolation of high precision machines

Published online by Cambridge University Press:  27 September 2010

C. Collette*
Affiliation:
European Organization for Nuclear Research CH-1211 Geneva 23, Switzerland
S. Janssens
Affiliation:
European Organization for Nuclear Research CH-1211 Geneva 23, Switzerland
K. Artoos
Affiliation:
European Organization for Nuclear Research CH-1211 Geneva 23, Switzerland
C. Hauviller
Affiliation:
European Organization for Nuclear Research CH-1211 Geneva 23, Switzerland
*
Email address for correspondence: christophe.collette@cern.ch
Get access

Abstract

This paper provides a review of active control strategies used to isolate high-precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

Type
Contributed paper
Copyright
Copyright © Diamond Light Source Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastaits, R., Rodrigues, G., Mokrani, B. & Preumont, A. 2009 Active optics of large segmented mirrors: dynamics and control. J. Guid. Control Dyn. 32, 17951803.Google Scholar
Buflone, D. 2008 Overview of fast beam position feedback systems. In Proceedings of EPAC, Genoa, Italy 1021–1025.Google Scholar
Chanan, G., MacMartin, D. G., Nelson, J. & Mast, T. 2004 Control and alignment of segmented-mirror telescopes: matrices, modes, and error propagation. Appl. Opt. 43, 12231232.Google Scholar
Collette, C., Artoos, K., Kuzmin, A., Janssens, S., Sylte, M., Guinchard, M. & Hauviller, C. 2010 Active quadrupole stabilization for future linear particle colliders. Nucl. Instrum. Methods Phys. Res. A, 621, 7178Google Scholar
Kar-Leung Miu, K. 2008 A low cost, DC-coupled active vibration system. PhD thesis, Massachusetts Institute of Technology, September 2008.Google Scholar
Karnopp, D., Crosby, M. J. & Harwood, R. A. 1974 Vibration control using semi-active force generators. J. Engng Ind. 96, 619626.Google Scholar
Nelson, P. G. 1991 An active vibration isolation system for inertial reference and precision measurement. Rev. Sci. Instrum. 62, 20692075.Google Scholar
Preumont, A. 2006 Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems, Springer, Dordrecht, The Netherlands ISBN 1-4020-4695-2.Google Scholar
Saulson, P. R. 1894 Vibration isolation for broadband gravitational wave antennas. Rev. Sci. Instrum. 55, 13151320.Google Scholar
Beard, A. M., Schubert, D. W. & von Flotow, A. H. 1994 A practical product implementation of an active/passive vibration isolation. SPIE, 2264, 38.Google Scholar
Schubert, D. W., Beard, A. M., Shedd, S. F., Earles, M. R. Jr. & von Flotow, A. H. 1997 Stiff actuator active vibration isolation system. Tech Rep. Patent Number: 5,823,307, United States Patent.Google Scholar
Vervoordeldonk, M. J., Ruijl, T. A. M. & Rijs, R. M. G. 2004 Development of a novel active isolation concept. ASPE Spring Topical Meeting.Google Scholar
Vervoordeldonk, M. J. & Stoutjesdijk, H. 2006 Recent developments, a novel active isolation concept. In 6th Euspen International Conference, (ed. H. Zervos) Baden bei Wien.Google Scholar