Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T23:49:56.769Z Has data issue: false hasContentIssue false

Methylation matters: FK506 binding protein 51 (FKBP5) methylation moderates the associations of FKBP5 genotype and resistant attachment with stress regulation

Published online by Cambridge University Press:  12 April 2017

Rosa H. Mulder
Affiliation:
Leiden University Erasmus University Medical CenterRotterdam
Jolien Rijlaarsdam
Affiliation:
Leiden University Erasmus University Medical CenterRotterdam
Maartje P. C. M. Luijk
Affiliation:
Erasmus University Medical CenterRotterdam Erasmus University Rotterdam
Frank C. Verhulst
Affiliation:
Erasmus University Medical CenterRotterdam
Janine F. Felix
Affiliation:
Erasmus University Medical CenterRotterdam
Henning Tiemeier
Affiliation:
Erasmus University Medical CenterRotterdam
Marian J. Bakermans-Kranenburg*
Affiliation:
Leiden University
Marinus H. Van Ijzendoorn*
Affiliation:
Leiden University Erasmus University Medical CenterRotterdam
*
Address correspondence and reprint requests to: Marinus van IJzendoorn or Marian Bakermans-Kranenburg, Center for Child and Family Studies, Leiden University, PO Box 9555, 2300 RB Leiden, the Netherlands; E-mail: vanijzen@fsw.leidenuniv.nl or bakermans@fsw.leidenuniv.nl.
Address correspondence and reprint requests to: Marinus van IJzendoorn or Marian Bakermans-Kranenburg, Center for Child and Family Studies, Leiden University, PO Box 9555, 2300 RB Leiden, the Netherlands; E-mail: vanijzen@fsw.leidenuniv.nl or bakermans@fsw.leidenuniv.nl.

Abstract

The parent–child attachment relationship plays an important role in the development of the infant's stress regulation system. However, genetic and epigenetic factors such as FK506 binding protein 51 (FKBP5) genotype and DNA methylation have also been associated with hypothalamus–pituitary–adrenal axis functioning. In the current study, we examined how parent–child dyadic regulation works in concert with genetic and epigenetic aspects of stress regulation. We study the associations of attachment, extreme maternal insensitivity, FKBP5 single nucleotide polymorphism 1360780, and FKBP5 methylation, with cortisol reactivity to the Strange Situation Procedure in 298 14-month-old infants. The results indicate that FKBP5 methylation moderates the associations of FKBP5 genotype and resistant attachment with cortisol reactivity. We conclude that the inclusion of epigenetics in the field of developmental psychopathology may lead to a more precise picture of the interplay between genetic makeup and parenting in shaping stress reactivity.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The Generation R Study is conducted by the Erasmus Medical Center in close collaboration with the Erasmus University Rotterdam School of Law and Faculty of Social Sciences, the Municipal Health Service Rotterdam, the Rotterdam Homecare Foundation, and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond, Rotterdam. We gratefully acknowledge the contribution of general practitioners, hospitals, midwives, and pharmacies in Rotterdam. The Generation R Study is made possible by financial support from Erasmus Medical Center, Rotterdam; Erasmus University Rotterdam; and the Netherlands Organization for Health Research and Development (ZonMw). The generation and management of the Illumina 450K methylation array data (EWAS data) for the Generation R Study was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Netherlands. The EWAS data was funded by a grant from the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research Netherlands Consortium for Healthy Aging (Project 050-060-810), by funds from the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, by a grant from the Netherlands Organization for Health Research and Development (VIDI 016.136.361), and a Consolidator Grant from the European Research Council (ERC-2014-CoG-64916). We thank Mr. Michael Verbiest, Ms. Mila Jhamai, Ms. Sarah Higgins, Mr. Marijn Verkerk, and Dr. Lisette Stolk for their help in creating the EWAS database. Janine Felix has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 633595 (DynaHEALTH). Marinus van IJzendoorn and Marian Bakermans-Kranenburg were supported by the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research (Gravitation program, SPINOZA, VICI).

References

Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. N. (2015). Patterns of attachment: A psychological study of the strange situation. Hove: Psychology Press.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene × Environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381409.Google Scholar
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Mesman, J., Alink, L. R. A., & Juffer, F. (2008). Effects of an attachment-based intervention on daily cortisol moderated by dopamine receptor D4: A randomized control trial on 1- to 3-year-olds screened for externalizing behavior. Development and Psychopathology, 20, 805820.CrossRefGoogle ScholarPubMed
Bernard, K., & Dozier, M. (2010). Examining infants’ cortisol responses to laboratory tasks among children varying in attachment disorganization: Stress reactivity or return to baseline? Developmental Psychology, 46, 1771.Google Scholar
Binder, E. B. (2009). The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology, 34, S186S195.CrossRefGoogle ScholarPubMed
Binder, E. B., Bradley, R. G., Liu, W., Epstein, M. P., Deveau, T. C., Mercer, K. B., … Nemeroff, C. B. (2008). Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. Journal of the American Medical Association, 299, 12911305.CrossRefGoogle ScholarPubMed
Bouwland-Both, M. I., Van Mil, N. H., Tolhoek, C. P., Stolk, L., Eilers, P. H., Verbiest, M. M., … van IJzendoorn, M. H. (2015). Prenatal parental tobacco smoking, gene specific DNA methylation, and newborns size: The Generation R study. Clinical Epigenetics, 7, 1.Google Scholar
Bowlby, J. (1969). Attachment: Vol. 1. Attachment and loss. New York: Basic Books.Google Scholar
Cao-Lei, L., Massart, R., Suderman, M. J., Machnes, Z., Elgbeili, G., Laplante, D. P., … King, S. (2014). DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PLOS ONE, 9, e107653.Google Scholar
Carlson, V., Cicchetti, D., Barnett, D., & Braunwald, K. (1989). Disorganized/disoriented attachment relationships in maltreated infants. Developmental Psychology, 25, 525.Google Scholar
Cassidy, J. (2008). The nature of the child's ties. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of attachment: Theory, research, and clinical applications (2nd ed., pp. 320). New York: Guilford Press.Google Scholar
Cyr, C., Euser, E. M., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2010). Attachment security and disorganization in maltreating and high-risk families: A series of meta-analyses. Development and Psychopathology, 22, 87108.Google Scholar
Doom, J. R., & Gunnar, M. R. (2013). Stress physiology and developmental psychopathology: Past, present, and future. Development and Psychopathology, 25, 13591373.Google Scholar
Ewald, E. R., Wand, G. S., Seifuddin, F., Yang, X., Tamashiro, K. L., Potash, J. B., … Lee, R. S. (2014). Alterations in DNA methylation of Fkbp5 as a determinant of blood–brain correlation of glucocorticoid exposure. Psychoneuroendocrinology, 44, 112122.CrossRefGoogle ScholarPubMed
Fox, N. A., & Hane, A. A. (2008). Studying the biology of human attachment. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of attachment: Theory, research, and clinical applications (2nd ed., pp. 217240). New York: Guilford Press.Google Scholar
Gunnar, M. R., Brodersen, L., Nachmias, M., Buss, K., & Rigatuso, J. (1996). Stress reactivity and attachment security. Developmental Psychobiology, 29, 191204.Google Scholar
Hannon, E., Lunnon, K., Schalkwyk, L., & Mill, J. (2015). Interindividual methylomic variation across blood, cortex, and cerebellum: Implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics, 10, 10241032.Google Scholar
Hertsgaard, L., Gunnar, M., Erickson, M. F., & Nachmias, M. (1995). Adrenocortical responses to the strange situation in infants with disorganized/disoriented attachment relationships. Child Development, 66, 11001106.CrossRefGoogle Scholar
Hesse, E., & Main, M. (2006). Frightened, threatening, and dissociative parental behavior in low-risk samples: Description, discussion, and interpretations. Development and Psychopathology, 18, 309343.Google Scholar
Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., … Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 1.Google Scholar
Houtepen, L. C., Vinkers, C. H., Carrillo-Roa, T., Hiemstra, M., Van Lier, P. A., Meeus, W., … Mill, J. (2016). Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nature Communications. Advance online publication.Google Scholar
Hughes, L. A., Van den Brandt, P. A., De Bruïne, A. P., Wouters, K. A., Hulsmans, S., Spiertz, A., … Weijenberg, M. P. (2009). Early life exposure to famine and colorectal cancer risk: A role for epigenetic mechanisms. PLOS ONE, 4, e7951.Google Scholar
Ising, M., Depping, A. M., Siebertz, A., Lucae, S., Unschuld, P. G., Kloiber, S., … Holsboer, F. (2008). Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. European Journal of Neuroscience, 28, 389398.Google Scholar
Jaddoe, V. W., Van Duijn, C. M., Franco, O. H., Van der Heijden, A. J., van IJzendoorn, M. H., De Jongste, J. C., … Raat, H. (2012). The Generation R Study: Design and cohort update 2012. European Journal of Epidemiology, 27, 739756.Google Scholar
Kember, R., Dempster, E., Lee, T., Schalkwyk, L. C., Mill, J., & Fernandes, C. (2012). Maternal separation is associated with strain-specific responses to stress and epigenetic alterations to Nr3c1, Avp, and Nr4a1 in mouse. Brain and Behavior, 2, 455467.Google Scholar
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., … Bradley, B. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 3341.Google Scholar
Kok, R., van IJzendoorn, M. H., Linting, M., Bakermans-Kranenburg, M. J., Tharner, A., Luijk, M. P., … Verhulst, F. (2013). Attachment insecurity predicts child active resistance to parental requests in a compliance task. Child: Care, Health and Development, 39, 277287.CrossRefGoogle Scholar
Kruithof, C. J., Kooijman, M. N., Van Duijn, C. M., Franco, O. H., De Jongste, J. C., Klaver, C. C., … Rings, E. H. (2014). The Generation R study: Biobank update 2015. European Journal of Epidemiology, 29, 911927.CrossRefGoogle ScholarPubMed
Li, G., & Reinberg, D. (2011). Chromatin higher-order structures and gene regulation. Current Opinion in Genetics & Development, 21, 175186.Google Scholar
Luijk, M. P., Roisman, G. I., Haltigan, J. D., Tiemeier, H., Booth-LaForce, C., van IJzendoorn, M. H., … Hofman, A. (2011). Dopaminergic, serotonergic, and oxytonergic candidate genes associated with infant attachment security and disorganization? In search of main and interaction effects. Journal of Child Psychology and Psychiatry, 52, 12951307.Google Scholar
Luijk, M. P., Saridjan, N., Tharner, A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Jaddoe, V. W., … Tiemeier, H. (2010). Attachment, depression, and cortisol: Deviant patterns in insecure-resistant and disorganized infants. Developmental Psychobiology, 52, 441452.CrossRefGoogle ScholarPubMed
Luijk, M. P., Velders, F. P., Tharner, A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Jaddoe, V. W., … Tiemeier, H. (2010). FKBP5 and resistant attachment predict cortisol reactivity in infants: Gene–environment interaction. Psychoneuroendocrinology, 35, 14541461.Google Scholar
Lyons-Ruth, K., Alpern, L., & Repacholi, B. (1993). Disorganized infant attachment classification and maternal psychosocial problems as predictors of hostile-aggressive behavior in the preschool classroom. Child Development, 64, 572585.Google Scholar
Lyons-Ruth, K., & Jacobvitz, D. (2008). Attachment disorganization: Genetic factors, parenting contexts, and developmental transformation from infancy to adulthood. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of attachment: Theory, research, and clinical applications (2nd ed., pp. 666697). New York: Guilford Press.Google Scholar
Main, M., & Solomon, J. (1990). Procedures for identifying infants as disorganized/disoriented during the Ainsworth Strange Situation. In Cicchetti, D. & Greenburg, M. T. (Eds.), Attachment in the preschool years: Theory, research, and intervention (Vol. 1, pp. 121160). Chicago: University of Chicago Press.Google Scholar
Meaney, M. J. (2010). Epigenetics and the biological definition of Gene × Environment interactions. Child Development, 81, 4179.Google Scholar
Mehta, D., Klengel, T., Conneely, K. N., Smith, A. K., Altmann, A., Pace, T. W., … Mercer, K. B. (2013). Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proceedings of the National Academy of Sciences, 110, 83028307.CrossRefGoogle ScholarPubMed
Mulligan, C., D'Errico, N., Stees, J., & Hughes, D. (2012). Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics, 7, 853857.CrossRefGoogle ScholarPubMed
Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmühl, Y., Fischer, D., … Spengler, D. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 15591566.Google Scholar
Muthén, L. K., & Muthén, B. O. (2012). Mplus user's guide (7th ed.). Los Angeles: Author.Google Scholar
Mychasiuk, R., Ilnytskyy, S., Kovalchuk, O., Kolb, B., & Gibb, R. (2011). Intensity matters: Brain, behaviour and the epigenome of prenatally stressed rats. Neuroscience, 180, 105110.Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97106.Google Scholar
Out, D., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2009). The role of disconnected and extremely insensitive parenting in the development of disorganized attachment: Validation of a new measure. Attachment & Human Development, 11, 419443.Google Scholar
Paquette, A. G., Lester, B. M., Koestler, D. C., Lesseur, C., Armstrong, D. A., & Marsit, C. J. (2014). Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS Cohort. PLOS ONE, 9, e104913.CrossRefGoogle ScholarPubMed
Philibert, R. A., Beach, S. R., Gunter, T. D., Brody, G. H., Madan, A., & Gerrard, M. (2010). The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153, 619628.CrossRefGoogle Scholar
Pidsley, R., Wong, C. C., Volta, M., Lunnon, K., Mill, J., & Schalkwyk, L. C. (2013). A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics, 14, 293.Google Scholar
Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.Google Scholar
Richmond, R. C., Simpkin, A. J., Woodward, G., Gaunt, T. R., Lyttleton, O., McArdle, W. L., … Tilling, K. (2014). Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Human Molecular Genetics. Advance online publication.Google ScholarPubMed
Rijlaarsdam, J., Cecil, A. M., Walton, E., Mesirow, M. S. C., Relton, C. T., Gaunt, T. R., … Barker, E. D. (2017). Prenatal unhealthy diet, insulin-like growth factor 2 gene (IGF2) methylation and attention deficit hyperactivity disorder (ADHD) symptoms for early-onset conduct problem youth. Journal of Child Psychology and Psychiatry, 58, 1927.Google Scholar
Rijlaarsdam, J., Pappa, I., Walton, E., Bakermans-Kranenburg, M. J., Mileva-Seitz, V. R., Rippe, R. C. A., … Felix, J. F. (2016). An epigenome-wide association meta-analysis of prenatal maternal stress in neonates: A model approach for replication. Epigenetics, 11, 140149.Google Scholar
Roy, A., Gorodetsky, E., Yuan, Q., Goldman, D., & Enoch, M.-A. (2010). Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology, 35, 16741683.Google Scholar
Spangler, G., & Grossmann, K. E. (1993). Biobehavioral organization in securely and insecurely attached infants. Child Development, 64, 14391450.CrossRefGoogle ScholarPubMed
Touleimat, N., & Tost, J. (2012). Complete pipeline for Infinium® Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics, 4, 325341.Google Scholar
van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., & Ebstein, R. P. (2011). Methylation matters in child development: Toward developmental behavioral epigenetics. Child Development Perspectives, 5, 305310.Google Scholar
van IJzendoorn, M. H., Caspers, K., Bakermans-Kranenburg, M. J., Beach, S. R., & Philibert, R. (2010). Methylation matters: Interaction between methylation density and serotonin transporter genotype predicts unresolved loss or trauma. Biological Psychiatry, 68, 405407.Google Scholar
Wong, C. C. Y., Caspi, A., Williams, B., Craig, I. W., Houts, R., Ambler, A., … Mill, J. (2010). A longitudinal study of epigenetic variation in twins. Epigenetics, 5, 516526.CrossRefGoogle ScholarPubMed
Wu, Y., Patchev, A. V., Daniel, G., Almeida, O. F., & Spengler, D. (2014). Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology, 155, 17511762.CrossRefGoogle ScholarPubMed
Supplementary material: File

Mulder supplementary material

Tables S1 and S2

Download Mulder supplementary material(File)
File 80.4 KB