Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T05:37:37.073Z Has data issue: false hasContentIssue false

Longitudinal study of premorbid adjustment in 22q11.2 deletion (velocardiofacial) syndrome and association with psychosis

Published online by Cambridge University Press:  11 February 2016

Petya D. Radoeva
Affiliation:
State University of New York at Upstate Medical University
Wanda Fremont
Affiliation:
State University of New York at Upstate Medical University
Kevin M. Antshel
Affiliation:
Syracuse University
Wendy R. Kates*
Affiliation:
State University of New York at Upstate Medical University
*
Address correspondence and reprint requests to: Wendy R. Kates, 750 East Adams Street, Syracuse, NY 13210; E-mail: katesw@upstate.edu.

Abstract

Velocardiofacial syndrome, also known as 22q11.2 deletion syndrome (22q11DS), is associated with an increased risk of major psychiatric disorders, including schizophrenia. The emergence of psychotic symptoms in individuals with schizophrenia in the general population is often preceded by a premorbid period of poor or worsening social and/or academic functioning. Our current study evaluated premorbid adjustment (via the Cannon–Spoor Premorbid Adjustment Scale [PAS]) and psychotic symptoms (via the Structured Interview for Prodromal Symptoms and the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children—Present and Lifetime Version) in youth with 22q11DS (N = 96), unaffected siblings (N = 40), and community controls (N = 50). The PAS scores indicated greater maladjustment during all developmental periods in individuals with 22q11DS compared to the controls. Many participants with 22q11DS had chronically poor (n = 33) or deteriorating (n = 6) PAS scores. In 22q11DS, chronically poor PAS trajectories and poor childhood and early adolescence academic domain and total PAS scores significantly increased the risk of prodromal symptoms or overt psychosis. Taking into account the catechol-O-methyltransferase (COMT) genotype, the best predictor of (prodromal) psychosis was the early adolescence academic domain score, which yielded higher sensitivity and specificity in the subgroup of youth with 22q11DS and the high-activity (valine) allele. PAS scores may help identify individuals at higher risk for psychosis.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, A. M., & Rapoport, J. L. (2009). The genetics of childhood-onset schizophrenia: When madness strikes the prepubescent. Current Psychiatry Reports, 11, 156161.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.Google Scholar
Aneja, A., Fremont, W. P., Antshel, K. M., Faraone, S. V., AbdulSabur, N., Higgins, A. M., et al. (2007). Manic symptoms and behavioral dysregulation in youth with velocardiofacial syndrome (22q11.2 deletion syndrome). Journal of Child and Adolescent Psychopharmacology, 17, 105114.CrossRefGoogle ScholarPubMed
Antshel, K. M., Fremont, W., Roizen, N. J., Shprintzen, R., Higgins, A. M., Dhamoon, A., et al. (2006). ADHD, major depressive disorder, and simple phobias are prevalent psychiatric conditions in youth with velocardiofacial syndrome. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 596603.Google Scholar
Antshel, K. M., Shprintzen, R., Fremont, W., Higgins, A. M., Faraone, S. V., & Kates, W. R. (2010). Cognitive and psychiatric predictors to psychosis in velocardiofacial syndrome: A 3-year follow-up study. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 333344.Google Scholar
Armando, M., Girardi, P., Vicari, S., Menghini, D., Digilio, M. C., Pontillo, M., et al. (2012). Adolescents at ultra-high risk for psychosis with and without 22q11 deletion syndrome: A comparison of prodromal psychotic symptoms and general functioning. Schizophrenia Research, 139, 151156.Google Scholar
Baker, K., Baldeweg, T., Sivagnanasundaram, S., Scambler, P., & Skuse, D. (2005). COMT Val108/158 Met modifies mismatch negativity and cognitive function in 22q11 deletion syndrome. Biological Psychiatry, 58, 2331.Google Scholar
Baker, K. D., & Skuse, D. H. (2005). Adolescents and young adults with 22q11 deletion syndrome: Psychopathology in an at-risk group. British Journal of Psychiatry, 186, 115120.CrossRefGoogle Scholar
Barnett, J. H., Heron, J., Ring, S. M., Golding, J., Goldman, D., Xu, K., et al. (2007). Gender-specific effects of the catechol-O-methyltransferase [Val.sup.108/158]Met polymorphism on cognitive function in children. American Journal of Psychiatry, 164, 142149.Google Scholar
Bassett, A. S., & Chow, E. W. (1999). 22q11 deletion syndrome: A genetic subtype of schizophrenia. Biological Psychiatry, 46, 882891.Google Scholar
Bassett, A. S., & Chow, E. W. (2008). Schizophrenia and 22q11.2 deletion syndrome. Current Psychiatry Reports, 10, 148157.Google Scholar
Bassett, A. S., Chow, E. W. C., AbdelMalik, P., Gheorghiu, M., Husted, J., & Weksberg, R. (2003). The schizophrenia phenotype in 22q11 deletion syndrome. American Journal of Psychiatry, 160, 15801586.Google Scholar
Bleuler, E. (1911). Dementia praecox oder Gruppe der Schizophrenien [Dementia praecox or the group of schizophrenias]. Leipzig: Franz Deuticke.Google Scholar
Bleuler, M., & Bleuler, R. (1986). Dementia praecox oder die Gruppe der Schizophrenien: Eugen Bleuler. British Journal of Psychiatry, 149, 661662.Google Scholar
Botto, L. D., May, K., Fernhoff, P. M., Correa, A., Coleman, K., Rasmussen, S. A., et al. (2003). A population-based study of the 22q11.2 deletion: Phenotype, incidence, and contribution to major birth defects in the population. Pediatrics, 112, 101107.Google Scholar
Cannon-Spoor, H. E., Potkin, S. G., & Wyatt, R. J. (1982). Measurement of premorbid adjustment in chronic schizophrenia. Schizophrenia Bulletin, 8, 470484.Google Scholar
Coman, I. L., Gnirke, M. H., Middleton, F. A., Antshel, K. M., Fremont, W., Higgins, A. M., et al. (2010). The effects of gender and catechol O-methyltransferase (COMT) Val108/158Met polymorphism on emotion regulation in velo-cardio-facial syndrome (22q11.2 deletion syndrome): An fMRI study. NeuroImage, 53, 10431050.Google Scholar
Drew, L. J., Crabtree, G. W., Markz, S., Stark, K. L., Chaverneff, F., Xu, B., et al. (2011). The 22q11.2 microdeletion: Fifteen years of insights into the genetic and neural complexity of psychiatric disorders. International Journal of Developmental Neuroscience, 29, 259281.Google Scholar
Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences, 98, 69176922.CrossRefGoogle ScholarPubMed
Eggers, C., Bunk, D., Volberg, G., & Ropcke, B. (1999). The ESSEN study of childhood-onset schizophrenia: Selected results. European Child & Adolescent Psychiatry, 8(Suppl. 1), I21I28.Google Scholar
Feinstein, C., Eliez, S., Blasey, C., & Reiss, A. L. (2002). Psychiatric disorders and behavioral problems in children with velocardiofacial syndrome: Usefulness as phenotypic indicators of schizophrenia risk. Biological Psychiatry, 51, 312318.CrossRefGoogle ScholarPubMed
Furniss, F., Biswas, A. B., Gumber, R., & Singh, N. (2011). Cognitive phenotype of velocardiofacial syndrome: A review. Research in Developmental Disabilities, 32, 22062213.Google Scholar
Goldman-Rakic, P. S., Muly III, E. C., & Williams, G. V. (2000). D(1) receptors in prefrontal cells and circuits. Brain Research Reviews, 31, 295301.Google Scholar
Gothelf, D., Eliez, S., Thompson, T., Hinard, C., Penniman, L., Feinstein, C., et al. (2005). COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nature Neuroscience, 8, 15001502.Google Scholar
Gothelf, D., Feinstein, C., Thompson, T., Gu, E., Penniman, L., Van Stone, E., et al. (2007). Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. American Journal of Psychiatry, 164, 663669.Google Scholar
Gothelf, D., Hoeft, F., Ueno, T., Sugiura, L., Lee, A. D., Thompson, P., et al. (2011). Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome. Journal of Psychiatric Research, 45, 322331.Google Scholar
Gothelf, D., Schneider, M., Green, T., Debbane, M., Frisch, A., Glaser, B., et al. (2013). Risk factors and the evolution of psychosis in 22q11.2 deletion syndrome: A longitudinal 2-site study. Journal of the American Academy of Child & Adolescent Psychiatry, 52, 11921203.e3.Google Scholar
Goulding, S. M., Holtzman, C. W., Trotman, H. D., Ryan, A. T., MacDonald, A. N., Shapiro, D. I., et al. (2013). The prodrome and clinical risk for psychotic disorders. Child Adolescent Psychiatric Clinics of North America, 22, 557567.Google Scholar
Grati, F. R., Malvestiti, B., Maggi, F., Simoni, G., Molina Gomes, D., Herve, B., et al. (2015). Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenatal Diagnosis, 35, 801809.CrossRefGoogle ScholarPubMed
Green, T., Gothelf, D., Glaser, B., Debanne, M., Frisch, A., Kotler, M., et al. (2009). Psychiatric disorders and intellectual functioning throughout development in velocardiofacial (22q11.2 deletion) syndrome. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 10601068.CrossRefGoogle ScholarPubMed
Haas, G. L., & Sweeney, J. A. (1992). Premorbid and onset features of first-episode schizophrenia. Schizophrenia Bulletin, 18, 373386.Google Scholar
Hafner, H., & an der Heiden, W. (1997). Epidemiology of schizophrenia. Canadian Journal of Psychiatry, 42, 139151.Google Scholar
Hafner, H., Riecher-Rossler, A., Hambrecht, M., Maurer, K., Meissner, S., Schmidtke, A., et al. (1992). IRAOS: An instrument for the assessment of onset and early course of schizophrenia. Schizophrenia Research, 6, 209223.Google Scholar
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 2936.Google Scholar
Jiang, H., Xie, T., Ramsden, D. B., & Ho, S. L. (2003). Human catechol-O-methyltransferase down-regulation by estradiol. Neuropharmacology, 45, 10111018.Google Scholar
Joa, I., Johannessen, J. O., Langeveld, J., Friis, S., Melle, I., Opjordsmoen, S., et al. (2009). Baseline profiles of adolescent vs. adult-onset first-episode psychosis in an early detection program. Acta Psychiatrica Scandinavica, 119, 494500.Google Scholar
Jolin, E. M., Weller, R. A., & Weller, E. B. (2009). Psychosis in children with velocardiofacial syndrome (22q11.2 deletion syndrome). Current Psychiatry Reports, 11, 99105.Google Scholar
Jones, P. B. (2013). Adult mental health disorders and their age at onset. British Journal of Psychiatry, 54(Suppl.), S5S10.Google Scholar
Kates, W. R., Antshel, K. M., Faraone, S. V., Fremont, W. P., Higgins, A. M., Shprintzen, R. J., et al. (2011). Neuroanatomic predictors to prodromal psychosis in velocardiofacial syndrome (22q11.2 deletion syndrome): A longitudinal study. Biological Psychiatry, 69, 945952.Google Scholar
Kaufman, J., Birmaher, B., Brent, D., Rao, U., & Ryan, N. (1996). Kiddie Schedule for Affective Disorders and Schizophrenia—Present and Lifetime Version (K-SADS-PL). Retrieved from http://www.psychiatry.pitt.edu/node/8233 Google Scholar
Lachman, H. M., Veit, S., Faedda, G., Papolos, D. F., Morrow, B., Goldberg, R., et al. (1996). Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. American Journal of Medical Genetics, 67, 468472.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Lambe, E. K., Krimer, L. S., & Goldman-Rakic, P. S. (2000). Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. Journal of Neuroscience, 20, 87808787.Google Scholar
Levine, S. Z., & Rabinowitz, J. (2010). Trajectories and antecedents of treatment response over time in early-episode psychosis. Schizophrenia Bulletin, 36, 624632.Google Scholar
Miller, T. J., McGlashan, T. H., Rosen, J. L., Cadenhead, K., Ventura, J., McFarlane, W., et al. (2003). Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: Predictive validity, interrater reliability, and training to reliability. Schizophrenia Bulletin, 29, 703715.Google Scholar
Miller, T. J., McGlashan, T. H., Rosen, J. L., Somjee, L., Markovich, P. J., Stein, K., et al. (2002). Prospective diagnosis of the initial prodrome for schizophrenia based on the Structured Interview for Prodromal Syndromes: Preliminary evidence of interrater reliability and predictive validity. American Journal of Psychiatry, 159, 863865.Google Scholar
Monks, S., Niarchou, M., Davies, A. R., Walters, J. T. R., Williams, N., Owen, M. J., et al. (2014). Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. Schizophrenia Research, 153, 231236.Google Scholar
Murphy, K. C. (2002). Schizophrenia and velo-cardio-facial syndrome. Lancet, 359, 426430.Google Scholar
Nicolson, R., & Rapoport, J. L. (1999). Childhood-onset schizophrenia: Rare but worth studying. Biological Psychiatry, 46, 14181428.Google Scholar
Nieman, D. H., Dragt, S., Soen, F., Van Tricht, M. J., Velthorst, E., Becker, H. E., et al. (2014). Psychosis prediction: Stratification of risk estimation with information-processing and premorbid functioning variables. Schizophrenia Bulletin, 40, 14821490.Google Scholar
Rabinowitz, J., Harvey, P. D., Eerdekens, M., & Davidson, M. (2006). Premorbid functioning and treatment response in recent-onset schizophrenia. British Journal of Psychiatry, 189, 3135.Google Scholar
Raux, G., Bumsel, E., Legallic, S., Bou, J., Drouin-Garraud, V., Lemarchand, M., et al. (2007). Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Human Molecular Genetics, 16, 8391.CrossRefGoogle ScholarPubMed
Russell, A. T. (1994). The clinical presentation of childhood-onset schizophrenia. Schizophrenia Bulletin, 20, 631646.Google Scholar
Saha, S., Chant, D., Welham, J., & McGrath, J. (2005). A systematic review of the prevalence of schizophrenia. PLOS Med., 2, e141.Google Scholar
Schneider, M., Debanne, M., Bassett, A. S., Chow, E. W. C., Fung, W. L. A., van den Bree, M. B. M., et al. (2014). Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: Results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. American Journal of Psychiatry, 171, 627640.Google Scholar
Shprintzen, R. J., & Golding-Kushner, K. J. (2008). Velo-cardio-facial syndrome (Vol. 1, chap. 2). San Diego, CA: Plural Publishing.Google Scholar
Sporn, A., Addington, A., Reiss, A. L., Dean, M., Gogtay, N., Potocnik, U., et al. (2004). 22q11 deletion syndrome in childhood onset schizophrenia: An update. Molecular Psychiatry, 9, 225226.CrossRefGoogle ScholarPubMed
Strous, R. D., Alvir, J. M. J., Robinson, D., Gal, G., Sheitman, B., Chakos, M., et al. (2004). Premorbid functioning in schizophrenia: Relation to baseline symptoms, treatment response, and medication side effects. Schizophrenia Bulletin, 30, 265278.CrossRefGoogle ScholarPubMed
Takahashi, S. (2013). Heterogeneity of schizophrenia: Genetic and symptomatic factors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162, 648652.Google Scholar
Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., et al. (2013). Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 150, 310.Google Scholar
Tarbox, S. I., Brown, L. H., & Haas, G. L. (2012). Diagnostic specificity of poor premorbid adjustment: Comparison of schizophrenia, schizoaffective disorder, and mood disorder with psychotic features. Schizophrenia Research, 141, 9197.Google Scholar
Tarbox, S. I., McGlashan, T. H., Woods, S. W., Addington, J., Cadenhead, K. S., Tsuang, M. T., et al. (2013). Premorbid functional development and conversion to psychosis in clinical high-risk youths. Development and Psychopathology, 25, 11711186.Google Scholar
Tunbridge, E. M., Harrison, P. J., Weickert, C. S., Klienman, J. E., Herman, M. M., Chen, J., et al. (2007). Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cerebral Cortex, 17, 12061212.Google Scholar
Tunbridge, E. M., Harrison, P. J., & Weinberger, D. R. (2006). Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60, 141151.Google Scholar
van Os, J., & Kapur, S. (2009). Schizophrenia. Lancet, 374, 635645.Google Scholar
Walker, E. F., Trotman, H. D., Goulding, S. M., Holtzman, C. W., Ryan, A. T., McDonald, A., et al. (2013). Developmental mechanisms in the prodrome to psychosis. Development and Psychopathology, 25, 15851600.Google Scholar
Wechsler, D. (1991). Wechsler Intelligence Scale for Children (3rd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale (3rd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Xie, T., Ho, S. L., & Ramsden, D. (1999). Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Molecular Pharmacology, 56, 3138.Google Scholar
Yuen, T., Chow, E. W., Silversides, C. K., & Bassett, A. S. (2013). Premorbid adjustment and schizophrenia in individuals with 22q11.2 deletion syndrome. Schizophrenia Research, 151, 221225.Google Scholar
Supplementary material: File

Radoeva supplementary material S1

Radoeva supplementary material

Download Radoeva supplementary material S1(File)
File 139.5 KB