Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-2qt69 Total loading time: 0.598 Render date: 2022-08-10T17:54:38.994Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The influence of five monoamine genes on trajectories of depressive symptoms across adolescence and young adulthood

Published online by Cambridge University Press:  31 January 2012

Daniel E. Adkins*
Affiliation:
Virginia Commonwealth University
Jonathan K. Daw
Affiliation:
University of North Carolina at Chapel Hill
Joseph L. McClay
Affiliation:
Virginia Commonwealth University
Edwin J. C. G. van den Oord
Affiliation:
Virginia Commonwealth University
*
Address correspondence and reprint requests to: Daniel E. Adkins, Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, McGuire Hall, Room 216A, 1112 East Clay Street, Richmond, VA 23298; E-mail: deadkins@vcu.edu.

Abstract

The influence of five monoamine candidate genes on depressive symptom trajectories in adolescence and young adulthood were examined in the Add Health genetic sample. Results indicated that, for all respondents, carriers of the dopamine receptor D4 5-repeat allele were characterized by distinct depressive symptom trajectories across adolescence and early adulthood. Similarly, for males, individuals with the monoamine oxidase A 3.5-repeat allele exhibited unique depressive symptom trajectories. Specifically, the trajectories of those with the dopamine receptor D4 5-repeat allele were characterized by rising levels in the transition to adulthood, while their peers were experiencing a normative drop in depressive symptom frequency. Conversely, males with the monoamine oxidase A 3.5-repeat allele were shown to experience increased distress in late adolescence. An empirical method for examining a wide array of allelic combinations was employed, and false discovery rate methods were used to control the risk of false positives due to multiple testing. Special attention was given to thoroughly interrogate the robustness of the putative genetic effects. These results demonstrate the value of combining dynamic developmental perspectives with statistical genetic methods to optimize the search for genetic influences on psychopathology across the life course.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, D. E., Wang, V., Dupre, M. E., van den Oord, E. J. C. G., & Elder, G. H. (2009). Structure and stress: Trajectories of depression across adolescence and young adulthood. Social Forces, 88, 3160.CrossRefGoogle ScholarPubMed
Adkins, D. E., Wang, V., & Elder, G. H. (2008). Stress processes and trajectories of depressive symptoms in early life: Gendered development. In Turner, H. A. & Schieman, S. (Eds.), Advances in life course research: Stress processes across the life course (pp. 107134). New York: Elsevier JAI.Google Scholar
Aneshensel, C. S., & Huba, G. J. (1983). Depression, alcohol-use, and smoking over one year—A 4-wave longitudinal causal model. Journal of Abnormal Psychology, 92, 134150.CrossRefGoogle Scholar
Anguelova, M., Benkelfat, C., & Turecki, G. (2003). A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Molecular Psychiatry, 8, 574591.CrossRefGoogle ScholarPubMed
Asghari, V., Sanyal, S., Buchwaldt, S., Paterson, A., Jovanovic, V., & Van Tol, H. H. M. (1995). Modulation of intracellular cyclic-AMP levels by different human dopamine D4 receptor variants. Journal of Neurochemistry, 65, 11571165.CrossRefGoogle ScholarPubMed
Bach, A. W. J., Lan, N. C., Johnson, D. L., Abell, C. W., Bembenek, M. E., Kwan, S. W., et al. (1988). cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proceedings of the National Academy of Sciences of the United States of America, 85, 49344938.CrossRefGoogle Scholar
Barbot, W., Dupressoir, A., Lazar, V., & Heidmann, T. (2002). Epigenetic regulation of an IAP retrotransposon in the aging mouse: Progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic Acids Research, 30, 23652373.CrossRefGoogle ScholarPubMed
Bergen, S. E., Gardner, C. O., & Kendler, K. S. (2007). Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: A meta-analysis. Twin Research and Human Genetics, 10, 423433.CrossRefGoogle Scholar
Blazer, D. G., Landerman, L. R., Hays, J. C., Simonsick, E. M., & Saunders, W. B. (1998). Symptoms of depression among community-dwelling elderly African-American and White older adults. Psychological Medicine, 28, 13111320.CrossRefGoogle ScholarPubMed
Bocchetta, A., Piccardi, M. P., Palmas, M. A., Oi, A., & Del Zompo, M. (1999). Family-based association study between bipolar disorder and DRD2, DRD4, DAT, and SERT in Sardinia. American Journal of Medical Genetics, 88, 522526.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Chen, C., Rainnie, D. G., Greene, R. W., & Tonegawa, S. (1994). Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science, 266, 291294.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (1998). The development of depression in children and adolescents. American Psychologist, 53, 221241.CrossRefGoogle ScholarPubMed
Colhoun, H. M., McKeigue, P. M., & Smith, G. D. (2003). Problems of reporting genetic associations with complex outcomes. Lancet, 361, 865872.CrossRefGoogle ScholarPubMed
Costello, E. J., Pine, D. S., Hammen, C., March, J. S., Plotsky, P. M., Weissman, M. A., et al. (2002). Development and natural history of mood disorders. Biological Psychiatry, 52, 529542.CrossRefGoogle ScholarPubMed
Diggle, P., & Kenward, M. G. (1994). Informative drop-out in longitudinal data-analysis. Applied Statistics—Journal of the Royal Statistical Society Series C, 43, 4993.Google Scholar
Du, L. S., Bakish, D., Ravindran, A., & Hrdina, P. D. (2004). MAO-A gene polymorphisms are associated with major depression and sleep disturbance in males. NeuroReport, 15, 20972101.CrossRefGoogle ScholarPubMed
Eaves, L., Silberg, J., Foley, D., Bulik, C., Maes, H., Erkanli, A., et al. (2004). Genetic and environmental influences on the relative timing of pubertal change. Twin Research 7, 471481.CrossRefGoogle ScholarPubMed
Elder, G. H., George, L. K., & Shanahan, M. J. (1996). Psychosocial stress over the life course. In Kaplan, H. B. & Kaplan, B. (Eds.), Psychosocial stress: Perspectives on structure, theory, life course, and methods (pp. 247292). Reading, MA: Academic Press.Google Scholar
Eley, T. C., & Stevenson, J. (1999). Exploring the covariation between anxiety and depression symptoms: A genetic analysis of the effects of age and sex. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 12731282.CrossRefGoogle ScholarPubMed
Elovainio, M., Jokela, M., Kivimaki, M., Pulkki-Raback, L., Lehtimaki, T., Airla, N., et al. (2007). Genetic variants in the DRD2 gene moderate the relationship between stressful life events and depressive symptoms in adults: Cardiovascular risk in young Finns study. Psychosomatic Medicine, 69, 391395.CrossRefGoogle ScholarPubMed
Emilien, G., Maloteaux, J. M., Geurts, M., Hoogenberg, K., & Cragg, S. (1999). Dopamine receptors—Physiological understanding to therapeutic intervention potential. Pharmacology & Therapeutics, 84, 133156.CrossRefGoogle ScholarPubMed
Ensel, W. (1996). Measuring depression: The CES–D scale. In Lin, N., Dean, A., & Ensel, W. (Eds.), Social support, life events and depression (pp. 5170). Reading, MA: Academic Press.Google Scholar
Fernando, R. L., Nettleton, D., Southey, B. R., Dekkers, J. C. M., Rothschild, M. F., & Soller, M. (2004). Controlling the proportion of false positives in multiple dependent tests. Genetics, 166, 611619.CrossRefGoogle ScholarPubMed
Fossella, J., Green, A. E., & Fan, J. (2006). Evaluation of a structural polymorphism in the ankyrin repeat and kinase domain containing 1 (ANKK1) gene and the activation of executive attention networks. Cognitive, Affective, & Behavioral Neuroscience, 6, 7178.CrossRefGoogle ScholarPubMed
Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestart, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102, 1060410609.CrossRefGoogle ScholarPubMed
Freeman, B., Powell, J., Ball, D., Hill, L., Craig, I., & Plomin, R. (1997). DNA by mail: An inexpensive and noninvasive method for collecting DNA samples from widely dispersed populations. Behavior Genetics, 27, 251257.CrossRefGoogle ScholarPubMed
Ge, X. J., Lorenz, F. O., Conger, R. D., Elder, G. H., & Simons, R. L. (1994). Trajectories of stressful life events and depressive symptoms during adolescence. Developmental Psychology, 30, 467483.CrossRefGoogle Scholar
Ge, X. J., Natsuaki, M. N., & Conger, R. D. (2006). Trajectories of depressive symptoms and stressful life events among male and female adolescents in divorced and nondivorced families. Development and Psychopathology, 18, 253273.CrossRefGoogle ScholarPubMed
Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379, 606612.CrossRefGoogle ScholarPubMed
Grant, B. F., & Harford, T. C. (1995). Comorbidity between DSM-IV alcohol-use disorders and major depression—Results of a national survey. Drug and Alcohol Dependence, 39, 197206.CrossRefGoogle ScholarPubMed
Guo, G., Roettger, M. E., & Cai, T. J. (2008). The integration of genetic propensities into social-control models of delinquency and violence among male youths. American Sociological Review, 73, 543568.CrossRefGoogle Scholar
Guo, G., Roettger, M. E., & Shih, J. C. (2007). Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults. Human Genetics, 121, 125136.CrossRefGoogle ScholarPubMed
Haeffel, G. J., Getchell, M., Koposov, R. A., Yrigollen, C. M., DeYoung, C. G., Klinteberg, B.A., et al. (2008). Association between polymorphisms in the dopamine transporter gene and depression—Evidence for a gene–environment interaction in a sample of juvenile detainees. Psychological Science, 19, 6269.CrossRefGoogle Scholar
Hankin, B. L., Abramson, L. Y., Moffitt, T. E., Silva, P. A., McGee, R., & Angell, K. E. (1998). Development of depression from preadolescence to young adulthood: Emerging gender differences in a 10-year longitudinal study. Journal of Abnormal Psychology, 107, 128140.CrossRefGoogle Scholar
Jansson, M., McCarthy, S., Sullivan, P. F., Dickman, P., Andersson, B., Oreland, L., et al. (2005). MAOA haplotypes associated with thrombocyte-MAO activity. BMC Genetics, 6, 19.CrossRefGoogle ScholarPubMed
Kelsoe, J. R., Sadovnick, A. D., Kristbjarnarson, H., Bergesch, P., Mroczkowski-Parker, Z., Drennan, M., et al. (1996). Possible locus of bipolar disorder near the dopamine transporter on chromosome 5. American Journal of Medical Genetics, 67, 533540.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Kunugi, H., Ishida, S., Kato, T., Tatsumi, M., Sakai, T., Hattori, M., et al. (1999). A functional polymorphism in the promoter region of monoamine oxidase-A gene and mood disorders. Molecular Psychiatry, 4, 393395.CrossRefGoogle ScholarPubMed
Lench, N., Stanier, P., & Williamson, R. (1988). Simple non-invasive method to obtain DNA for gene analysis. Lancet, 1, 13561358.CrossRefGoogle ScholarPubMed
Li, T., Liu, X. H., Sham, P. C., Aitchison, K. J., Cai, G. Q., Arranz, M. J., et al. (1999). Association analysis between dopamine receptor genes and bipolar affective disorder. Psychiatry Research, 86, 193201.CrossRefGoogle ScholarPubMed
Li, T., Xu, K., Deng, H., Cai, G., Liu, J., Liu, X., et al. (1997). Association analysis of the dopamine D4 gene exon III VNTR and heroin abuse in Chinese subjects. Molecular Psychiatry, 2, 413416.CrossRefGoogle ScholarPubMed
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., & Hirschhorn, J. N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics, 33, 177182.CrossRefGoogle ScholarPubMed
Lopez, L. S., Croes, E. A., Sayed-Tabatabaei, F. A., Claes, S., Van Broeckhoven, C., & van Duijn, C. M. (2005). The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders: A meta-analysis. Biological Psychiatry, 57, 9991003.CrossRefGoogle Scholar
Lopez-Leon, S., Janssens, A., Ladd, A., Del-Favero, J., Claes, S. J., Oostra, B. A., et al. (2008). Meta-analyses of genetic studies on major depressive disorder. Molecular Psychiatry, 13, 772785.CrossRefGoogle ScholarPubMed
Lusher, J. M., Chandler, C., & Ball, D. (2001). Dopamine D4 receptor gene (DRD4) is associated with Novelty Seeking (NS) and substance abuse: The saga continues. Molecular Psychiatry, 6, 497499.CrossRefGoogle ScholarPubMed
Manki, H., Kanba, S., Muramatsu, T., Higuchi, S., Suzuki, E., Matsushita, S., et al. (1996). Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. Journal of Affective Disorders, 40, 713.CrossRefGoogle ScholarPubMed
McClay, J. L., Adkins, D. E., Aberg, K., Stroup, S., Perkins, D. O., Vladimirov, V. I., et al. (2010). Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Molecular Psychiatry, 16, 7685.Google Scholar
Meulenbelt, I., Droog, S., Trommelen, G. J. M., Boomsma, D. I., & Slagboom, P. E. (1995). High-yield noninvasive human genomic DNA isolation method for genetic-studies in geographically dispersed families and populations. American Journal of Human Genetics, 57, 12521254.Google ScholarPubMed
Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., Blasi, G., et al. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences of the United States of America, 103, 62696274.CrossRefGoogle ScholarPubMed
Muglia, P., Petronis, A., Mundo, E., Lander, S., Cate, T., & Kennedy, J. L. (2002). Dopamine D4 receptor and tyrosine hydroxylase genes in bipolar disorder: Evidence for a role of DRD4. Molecular Psychiatry, 7, 860866.CrossRefGoogle ScholarPubMed
Muramatsu, T., Higuchi, S., Murayama, M., Matsushita, S., & Hayashida, M. (1996). Association between alcoholism and the dopamine D4 receptor gene. Journal of Medical Genetics, 33, 113115.CrossRefGoogle ScholarPubMed
Murphy, D. L., Mitchell, P. B., & Potter, W. Z. (1994). Novel pharmacological approaches to the treatment of depression. In Bloom, F. E. & Bloom, D. J. (Eds.), Psychopharmacology. The fourth generation of progress (pp. 11431153). New York: Raven Press.Google Scholar
Natsuaki, M. N., Biehl, M. C., & Ge, X. J. (2009). Trajectories of depressed mood from early adolescence to young adulthood: The effects of pubertal timing and adolescent dating. Journal of Research on Adolescence, 19, 4774.CrossRefGoogle Scholar
Nes, R. B., Roysamb, E., Reichborn-Kjennerud, T., Harris, J. R., & Tambs, K. (2007). Symptoms of anxiety and depression in young adults: Genetic and environmental influences on stability and change. Twin Research and Human Genetics, 10, 450461.CrossRefGoogle ScholarPubMed
Neville, M. J., Johnstone, E. C., & Walton, R. T. (2004). Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Human Mutation, 23, 540545.CrossRefGoogle ScholarPubMed
Noble, E. P., Gottschalk, L. A., Fallon, J. H., Ritchie, T. L., & Wu, J. C. (1997). D-2 dopamine receptor polymorphism and brain regional glucose metabolism. American Journal of Medical Genetics, 74, 162166.3.0.CO;2-W>CrossRefGoogle Scholar
Noble, F., & Cox, B. M. (1997). The role of dopaminergic systems in opioid receptor desensitization in nucleus accumbens and caudate putamen of rat after chronic morphine treatment. Journal of Pharmacology and Experimental Therapeutics, 283, 557565.Google ScholarPubMed
Oak, J. N., Oldenhof, J., & Van Tol, H. H. M. (2000). The dopamine D-4 receptor: One decade of research. European Journal of Pharmacology, 405, 303327.CrossRefGoogle Scholar
Perreira, K. M., Deeb-Sossa, N., Harris, K. M., & Bollen, K. (2005). What are we measuring? An evaluation of the CES-D across race/ethnicity and immigrant generation. Social Forces, 83, 15671601.CrossRefGoogle Scholar
Preisig, M., Bellivier, F., Fenton, B. T., Baud, P., Berney, A., Courtet, P., et al. (2000). Association between bipolar disorder and monoamine oxidase A gene polymorphisms: Results of a multicenter study. American Journal of Psychiatry, 157, 948955.CrossRefGoogle ScholarPubMed
Radloff, L. S. (1977). The Center for Epidemiologic Studies Depression Scale a self report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.CrossRefGoogle Scholar
Radloff, L. S. (1991). The use of the Center for Epidemiologic Studies Depression Scale in adolescents and young-adults. Journal of Youth and Adolescence, 20, 149166.CrossRefGoogle ScholarPubMed
Reiss, D., & Neiderhiser, J. M. (2000). The interplay of genetic influences and social processes in developmental theory: Specific mechanisms are coming into view. Development and Psychopathology, 12, 357374.CrossRefGoogle ScholarPubMed
Rutter, M., & Sroufe, L. A. (2000). Developmental psychopathology: Concepts and challenges. Development and Psychopathology, 12, 265296.CrossRefGoogle ScholarPubMed
Sabatti, C., Service, S., & Freimer, N. (2003). False discovery rate in linkage and association genome screens for complex disorders. Genetics, 164, 829833.Google ScholarPubMed
Sabol, S. Z., Hu, S., & Hamer, D. (1998). A functional polymorphism in the monoamine oxidase A gene promoter. Human Genetics, 103, 273279.CrossRefGoogle ScholarPubMed
Saccone, S. F., Hinrichs, A. L., Saccone, N. L., Chase, G. A., Konvicka, K., Madden, P. A. F., et al. (2007). Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Human Molecular Genetics, 16, 3649.CrossRefGoogle Scholar
Schulze, T. G., Muller, D. J., Krauss, H., Scherk, H., Ohlraun, S., Syagailo, Y. V., et al. (2000). Association between a functional polymorphism in the monoamine oxidase A gene promoter and major depressive disorder. American Journal of Medical Genetics, 96, 801803.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Scourfield, J., Rice, F., Thapar, A., Harold, G. T., Martin, N., & McGuffin, P. (2003). Depressive symptoms in children and adolescents: Changing aetiological influences with development. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44, 968976.CrossRefGoogle ScholarPubMed
Searle, S. R. (1971). Linear models. New York: Wiley.Google Scholar
Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: Wiley.CrossRefGoogle Scholar
Serretti, A., Cristina, S., Lilli, R., Cusin, C., Lattuada, E., Lorenzi, C., et al. (2002). Family-based association study of 5-HTTLPR, TPH, MAO-A, and DRD4 polymorphisms in mood disorders. American Journal of Medical Genetics, 114, 361369.CrossRefGoogle ScholarPubMed
Serretti, A., Macciardi, F., Cusin, C., Lattuada, E., Souery, D., Lipp, O., et al. (2000). Linkage of mood disorders with D2, D3 and TH genes: A multicenter study. Journal of Affective Disorders, 58, 5161.CrossRefGoogle ScholarPubMed
Silberg, J., Pickles, A., Rutter, M., Hewitt, J., Simonoff, E., Maes, H., et al. (1999). The influence of genetic factors and life stress on depression among adolescent girls. Archives of General Psychiatry, 56, 225232.CrossRefGoogle ScholarPubMed
Silberg, J. L., Rutter, M., & Eaves, L. (2001). Genetic and environmental influences on the temporal association between earlier anxiety and later depression in girls. Biological Psychiatry, 49, 10401049.CrossRefGoogle ScholarPubMed
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.CrossRefGoogle ScholarPubMed
Storch, A., Ludolph, A. C., & Schwarz, J. (2004). Dopamine transporter: Involvement in selective dopaminergic neurotoxicity and degeneration. Journal of Neural Transmission, 111, 12671286.CrossRefGoogle ScholarPubMed
Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100, 94409445.CrossRefGoogle ScholarPubMed
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: Review and meta-analysis. American Journal of Psychiatry, 157, 15521562.CrossRefGoogle ScholarPubMed
Surtees, P. G., Wainwright, N. W. J., Willis-Owen, S. A. G., Luben, R., Day, N. E., & Flint, J. (2006). Social adversity, the serotonin transporter (5-HTTLPR) polymorphism and major depressive disorder. Biological Psychiatry, 59, 224229.CrossRefGoogle ScholarPubMed
Thompson, J., Thomas, N., Singleton, A., Piggott, M., Lloyd, S., Perry, E. K., et al. (1997). D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics, 7, 479484.CrossRefGoogle ScholarPubMed
Turner, R., & Wheaton, B. (1995). Checklist measures of stressful life events. In Cohen, S., Kessler, R. C., & Gordon, L. U. (Eds.), Measuring stress: A guide for health and social scientists (pp. 29–58). New York: Oxford University Press.Google Scholar
Vandenbergh, D. J., Persico, A. M., Hawkins, A. L., Griffin, C. A., Li, X., Jabs, E. W., et al. (1992). Human dopamine transporter gene (Dat1) maps to chromosome-5p15.3 and displays a VNTR. Genomics, 14, 11041106.CrossRefGoogle ScholarPubMed
van den Oord, E. J. C. G. (2005). Controlling false discoveries in candidate gene studies. Molecular Psychiatry, 10, 230231.CrossRefGoogle ScholarPubMed
van den Oord, E. J. C. G. (2008). Controlling false discoveries in genetic studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics147B, 637644.CrossRefGoogle ScholarPubMed
van den Oord, E. J. C. G., Kuo, P. H., Hartmann, A. M., Webb, B. T., Moller, H. J., Hettema, J. M., et al. (2008). Genomewide association analysis followed by a replication study implicates a novel candidate gene for neuroticism. Archives of General Psychiatry, 65, 10621071.CrossRefGoogle ScholarPubMed
van den Oord, E. J. C. G., & Sullivan, P. F. (2003). False discoveries and models for gene discovery. Trends in Genetics, 19, 537542.CrossRefGoogle ScholarPubMed
Van Tol, H. H. M., Wu, C. M., Guan, H. C., Ohara, K., Bunzow, J. R., Civelli, O., et al. (1992). Multiple dopamine-D4 receptor variants in the human-population. Nature, 358, 149152.Google ScholarPubMed
Wade, T. J., Cairney, J., & Pevalin, D. J. (2002). Emergence of gender differences in depression during adolescence: National panel results from three countries. Journal of the American Academy of Child & Adolescent Psychiatry 41, 190198.CrossRefGoogle ScholarPubMed
Waldman, I. D., Robinson, B. F., & Feigon, S. A. (1997). Linkage disequilibrium between the dopamine transporter gene (DAT1) and bipolar disorder: Extending the Transmission Disequilibrium Test (TDT) to examine genetic heterogeneity. Genetic Epidemiology, 14, 699704.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Whitelaw, N. C., & Whitelaw, E. (2006). How lifetimes shape epigenotype within and across generations. Human Molecular Genetics, 15, R131R137.CrossRefGoogle Scholar
Wight, R. G., Sepulveda, J. E., & Aneshensel, C. S. (2004). Depressive symptoms: How do adolescents compare with adults? Journal of Adolescent Health, 34, 314323.CrossRefGoogle ScholarPubMed
Wilhelm, K., Mitchell, P. B., Niven, H., Finch, A., Wedgwood, L., Scimone, A., et al. (2006). Life events, first depression onset and the serotonin transporter gene. British Journal of Psychiatry, 188, 210215.CrossRefGoogle ScholarPubMed
Willett, J. B., Singer, J. D., & Martin, N. C. (1998). The design and analysis of longitudinal studies of development and psychopathology in context: Statistical models and methodological recommendations. Development and Psychopathology, 10, 395426.CrossRefGoogle ScholarPubMed
Yu, Y. W. Y., Tsai, S. J., Hong, C. J., Chen, T. J., Chen, M. C., & Yang, C. W. (2005). Association study of a monoamine oxidase A gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology, 30, 17191723.CrossRefGoogle ScholarPubMed
Zahn-Waxler, C., Klimes-Dougan, B., & Slattery, M. J. (2000). Internalizing problems of childhood and adolescence: Prospects, pitfalls, and progress in understanding the development of anxiety and depression. Development and Psychopathology, 12, 443466.CrossRefGoogle ScholarPubMed
22
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The influence of five monoamine genes on trajectories of depressive symptoms across adolescence and young adulthood
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The influence of five monoamine genes on trajectories of depressive symptoms across adolescence and young adulthood
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The influence of five monoamine genes on trajectories of depressive symptoms across adolescence and young adulthood
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *