Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-22T08:32:59.310Z Has data issue: false hasContentIssue false

Exploring the interplay of dopaminergic genotype and parental behavior in relation to executive function in early childhood

Published online by Cambridge University Press:  15 November 2021

Daphne M. Vrantsidis*
Center for Biobehavioral Health, Nationwide Children’s Hospital, Columbus, OH, USA
Caron A.C. Clark
Department of Educational Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
Auriele Volk
Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
Lauren S. Wakschlag
Department of Medical Social Sciences, Feinberg School of Medicine and Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, IL, USA
Kimberly Andrews Espy
Departments of Psychology and Biology, University of Texas at San Antonio, San Antonio, TX, USA Department of Psychiatry and Behavioral Science, University of Texas Health San Antonio, San Antonio, TX, USA
Sandra A. Wiebe
Department of Psychology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
Corresponding author: Daphne M. Vrantsidis, email:


Child genotype is an important biologically based individual difference conferring differential sensitivity to the effect of parental behavior. This study explored dopaminergic polygenic composite × parental behavior interactions in relation to young children’s executive function. Participants were 135 36-month-old children and their mothers drawn from a prospective cohort followed longitudinally from pregnancy. A polygenic composite was created based on the number of COMT, DAT1, DRD2, and DRD4 alleles associated with increased reward sensitivity children carried. Maternal negative reactivity and responsiveness were coded during a series of structured mother–child interactions. Executive function was operationalized as self-control and working memory/inhibitory control. Path analysis supported a polygenic composite by negative reactivity interaction for self-control. The nature of the interaction was one of diathesis-stress, such that higher negative reactivity was associated with poorer self-control for children with higher polygenic composite scores. This result suggests that children with a higher number of alleles may be more vulnerable to the negative effect of negative reactivity. Negative reactivity may increase the risk for developing behavior problems in this population via an association with poorer self-control. Due to the small sample size, these initial findings should be treated with caution until they are replicated in a larger independent sample.

Regular Article
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Augustine, M. E., Leerkes, E. M., Smolen, A., & Calkins, S. D. (2018). Relations between early maternal sensitivity and toddler self-regulation: Exploring variation by oxytocin and dopamine D2 receptor genes. Developmental Psychobiology, 60, 789804. CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952. CrossRefGoogle Scholar
Barnes, J. J. M., Dean, A. J., Nandam, L. S., O’Connell, R. G., & Bellgrove, M. A. (2011). The molecular genetics of executive function: Role of monoamine system genes. Biological Psychiatry, 69, e127e143. CrossRefGoogle Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018. CrossRefGoogle Scholar
Beauchaine, T. P., Gatzke-Kopp, L. M., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184. CrossRefGoogle Scholar
Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-regulation. Journal of Child Psychology and Psychiatry, 52, 619626. CrossRefGoogle Scholar
Belsky, J., Newman, D. A., Widaman, K. F., Rodkin, P., Pluess, M., Fraley, R. C., Berry, D., Helm, J. L., & Roisman, G. I. (2015). Differential susceptibility to effects of maternal sensitivity? A study of candidate plasticity genes. Development and Psychopathology, 27, 725746. CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908. CrossRefGoogle Scholar
Carlson, S. M. (2005). Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28, 595616. CrossRefGoogle Scholar
Carlson, S. M., & Wang, T. S. (2007). Inhibitory control and emotion regulation in preschool children. Cognitive Development, 22, 489510. CrossRefGoogle Scholar
Chang, H., Olson, S. L., Sameroff, A. J., & Sexton, H. R. (2011). Child effortful control as a mediator of parenting practices on externalizing behavior: Evidence for a sex-differentiated pathway across the transition from preschool to school. Journal of Abnormal Child Psychology, 39, 7181. CrossRefGoogle Scholar
Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., Kolachana, B. S., Hyde, T. M., Herman, M. M., Apud, J., Egan, M. F., Kleinman, J. E., & Weinberger, D. R. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics, 75, 807821. CrossRefGoogle Scholar
Chhangur, R. R., Weeland, J., & Belsky, J. (2017). Genetic moderation of intervention efficacy: Dopaminergic genes, the Incredible Years, and externalizing behavior in children. Child Development, 88, 796811. CrossRefGoogle Scholar
Clark, C. A. C., Massey, S. H., Wiebe, S. A., Espy, K. A., & Wakschlag, L. S. (2019). Does early maternal responsiveness buffer prenatal tobacco exposure effects on young children’s behavioral disinhibition? Development and Psychopathology, 31, 12851298. CrossRefGoogle Scholar
Davies, P. T., & Cicchetti, D. (2014). How and why does the 5-HTTLPR gene moderate associations between maternal unresponsiveness and children’s disruptive problems? Child Development, 85, 484500. CrossRefGoogle Scholar
Davies, P. T., Pearson, J. K., Cicchetti, D., Martin, M. J., & Cummings, E. M. (2019). Emotional insecurity as a mediator of the moderating role of dopamine genes in the association between interparental conflict and youth externalizing problems. Development and Psychopathology, 31, 11111126. CrossRefGoogle Scholar
Del Giudice, M. (2017). Statistical tests of differential susceptibility: Performance, limitations, and improvements. Development and Psychopathology, 29, 12671278. CrossRefGoogle Scholar
Derogatis, L. R. (1993). BSI brief symptom inventory: Administration, scoring, and procedure manual (4th ed.). Minneapolis, MN: National Computer Systems.Google Scholar
Derringer, J., Krueger, R. F., Dick, D. M., Saccone, S., Grucza, R. A., Agrawal, A., Lin, P., Almasy, L., Edenberg, H. J., Foroud, T., Nurnberger, J. I. Jr., Hesselbrock, V. M., Kramer, J. R., Kuperman, S., Porjesz, B., Schuckt, M. A., & Bierut, L. J., as part of the Gene Environment Association Studies (GENEVA) Consortium. (2010). Predicting sensation seeking from dopamine genes: A candidate-system approach. Psychological Science, 21, 12821290. CrossRefGoogle Scholar
Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., Hewitt, J. K., Kendler, K. S., & Sher, K. J. (2015). Candidate gene–environment interaction research: Reflections and recommendations. Perspectives on Psychological Science, 10, 3759. CrossRefGoogle Scholar
Duncan, L. E., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feldman, M., Peterson, R., & Domingue, B. (2019). Analysis of polygenic risk score usage and performance in diverse human populations. Nature Communications, 10, 3328. CrossRefGoogle Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. CrossRefGoogle Scholar
Espy, K. A., Fang, H., Johnson, C., Stopp, C., Wiebe, S. A., & Respass, J. (2011). Prenatal tobacco exposure: Developmental outcomes in the neonatal period. Developmental Psychology, 47, 153169. CrossRefGoogle Scholar
Fischer, K., van den Akker, A. L., Larsen, H., Jorgensen, T. D., & Overbeek, G. (2020). Dopamine functioning and child externalizing behavior: A longitudinal analysis of polygenic susceptibility to parenting. Journal of Developmental and Behavioral Pediatrics, 41, 628636. CrossRefGoogle Scholar
Fuke, S., Suo, S., Takahashi, N., Koike, H., Sasagawa, N., & Ishiura, S. (2001). The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. The Pharmacogenomics Journal, 1, 152156. CrossRefGoogle Scholar
Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134, 3160. CrossRefGoogle Scholar
Gatzke-Kopp, L. M. (2011). The canary in the coalmine: The sensitivity of mesolimbic dopamine to environmental adversity during development. Neuroscience and Biobehavioral Reviews, 35, 794803. CrossRefGoogle Scholar
Gershoff, E. T. (2002). Corporal punishment by parents and associated child behaviors and experiences: A meta-analytic and theoretical review. Psychological Bulletin, 128, 539579. CrossRefGoogle Scholar
Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.). New York, NY: The Guilford Press.Google Scholar
Heath, C. J., & Picciotto, M. R. (2009). Nicotine-induced plasticity during development: Modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing. Neuropharmacology, 56, 254262. CrossRefGoogle Scholar
Hill, C., Maskowitz, K., Danis, B., & Wakschlag, L. S. (2008). Validation of a clinically sensitive, observational coding system for parenting behaviors: The Parenting clinical observation schedule. Parenting, 8, 153185. CrossRefGoogle Scholar
Houck, G. M., & Lecuyer-Maus, E. A. (2004). Maternal limit setting during toddlerhood, delay of gratification, and behavior problems at age five. Infant Mental Health Journal, 25, 2846. CrossRefGoogle Scholar
Hughes, C., & Devine, R. T. (2017). Parental influences on children’s executive function: A differentiated approach. In Wiebe, S. A. & Karbach, J. (Eds.), Executive function: Development across the lifespan (pp. 160171). New York, NY: Routledge.10.4324/9781315160719-11CrossRefGoogle Scholar
Johnson, P. O., & Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika, 15, 349367. CrossRefGoogle Scholar
Kanlikilicer, P., Zhang, D., Dragomir, A., Akay, Y. M., & Akay, M. (2017). Gene expression profiling of midbrain dopamine neurons upon gestational nicotine exposure. Medical and Biological Engineering and Computing, 55, 467482. CrossRefGoogle ScholarPubMed
Karreman, A., van Tuijl, C., van Aken, M. A. G., & Deković, M. (2006). Parenting and self-regulation in preschoolers: A meta-analysis. Infant and Child Development, 15, 561579. CrossRefGoogle Scholar
Keller, M. C. (2014). Gene × environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biological Psychiatry, 75, 1824. CrossRefGoogle Scholar
Keller, R. F., Dragomir, A., Yantao, F., Akay, Y. M., & Akay, M. (2018). Investigating the genetic profile of dopaminergic neurons in the VTA in response to perinatal nicotine exposure using mRNA-miRNA analyses. Scientific Reports, 8, 113. CrossRefGoogle Scholar
Kidd, C., Palmeri, H., & Aslin, R. N. (2013). Rational snacking: Young children’s decision-making on the marshmallow task is moderated by beliefs about environmental reliability. Cognition, 126, 109114. CrossRefGoogle Scholar
Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). New York, NY: Guilford Press.Google Scholar
Kochanska, G., Murray, K. T., & Harlan, E. T. (2000). Effortful control in early childhood: Continuity and change, antecedents, and implications for social development. Developmental Psychology, 36, 220232. CrossRefGoogle Scholar
Kok, R., Bakermans-Kranenburg, M. J., van Ijzendoorn, M. H., Velders, F. P., Linting, M., Jaddoe, V. W. V., … Tiemeier, H. (2013). The role of maternal stress during pregnancy, maternal discipline, and child COMT Val158Met genotype in the development of compliance. Developmental Psychobiology, 55, 451464. CrossRefGoogle Scholar
Kryski, K. R., Smith, H. J., Sheikh, H. I., Singh, S. M., & Hayden, E. P. (2014). Evidence for evocative gene-environment correlation between child oxytocin receptor (OXTR) genotype and caregiver behavior. Personality and Individual Differences, 64, 107110. CrossRefGoogle Scholar
Landry, S. H., Smith, K. E., & Swank, P. R. (2006). Responsive parenting: Establishing early foundations for social, communication, and independent problem-solving skills. Developmental Psychology, 42, 627642. CrossRefGoogle Scholar
Li-Grining, C. P. (2007). Effortful control among low-income preschoolers in three cities: Stability, change, and individual differences. Developmental Psychology, 43, 208221. CrossRefGoogle Scholar
Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 4554. CrossRefGoogle Scholar
Mason, C. H., & Perreault, W. D. Jr. (1991). Collinearity, power, and intepretation of multiple regression analysis. Journal of Marketing Research, 28, 268280. CrossRefGoogle Scholar
Matthys, W., Vanderschuren, L. J. M. J., & Schutter, D. J. L. G. (2013). The neurobiology of oppositional defiant disorder and conduct disorder: Altered functioning in three mental domains. Development and Psychopathology, 25, 193207. CrossRefGoogle Scholar
Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2010). Neural substrates of pleiotropic action of genetic variation in COMT: A meta-analysis. Molecular Psychiatry, 15, 918927. CrossRefGoogle Scholar
Moffitt, T. E., Poulton, R., & Caspi, A. (2013). Lifelong impact of early self-control. American Scientist, 101, 352359. CrossRefGoogle Scholar
Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425. CrossRefGoogle Scholar
Moore, S. R., & Depue, R. A. (2016). Neurobehavioral foundation of environmental reactivity. Psychological Bulletin, 142, 107164. CrossRefGoogle Scholar
Muthén, L. K., & Muthén, B. O. (2017). Mplus user’s guide (8th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
Nelson, J. M., James, T. D., Choi, H. J., Clark, C. A. C., Wiebe, S. A., & Espy, K. A. (2016). The changing nature of executive control in preschool: III. Distinguishing executive control from overlapping foundational cognitive abilities during the preschool period. Monographs of the Society for Research in Child Development, 81, 4768. CrossRefGoogle Scholar
Oh, Y., Greenberg, M. T., Willoughby, M. T., & The Family Life Project Key Investigators (2020). Examining longitudinal associations between externalizing and internalizing behavior problems at within- and between-child levels. Journal of Abnormal Child Psychology, 4, 467480. CrossRefGoogle Scholar
Pohjalainen, T., Rinne, J. O., Nagren, K., Lehikoinen, P., Anttila, K., Syvalahti, E. K., & Hietala, J. (1998). The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Molecular Psychiatry, 3, 256260. CrossRefGoogle Scholar
Razza, R. A., & Raymond, K. (2013). Associations among maternal behavior, delay of gratification, and school readiness across the early childhood years. Social Development, 22, 180196. CrossRefGoogle Scholar
Richardson, S. A., & Tizabi, Y. (1994). Hyperactivity in the offspring of nicotine-treated rats: Role of the mesolimbic and nigrostriatal dopaminergic pathways. Pharmacology, Biochemistry and Behavior, 47, 331337. CrossRefGoogle Scholar
Robbins, T. W., & Arnsten, A. F. T. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267287. CrossRefGoogle Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409. CrossRefGoogle Scholar
Salvatore, J. E., & Dick, D. M. (2018). Genetic influences on conduct disorder. Neuroscience and Biobehavioral Reviews, 91, 91101. CrossRefGoogle Scholar
Scaramella, L. V, & Leve, L. D. (2004). Clarifying parent–child reciprocities during early childhood: The early childhood coercion model. Clinical Child and Family Psychology Review, 7, 89107. Scholar
Schoemaker, K., Bunte, T., Wiebe, S. A., Espy, K. A., Deković, M., & Matthys, W. (2012). Executive function deficits in preschool children with ADHD and DBD. Journal of Child Psychology and Psychiatry, 53, 111119. CrossRefGoogle Scholar
Schoots, O., & van Tol, H. H. M. (2003). The human dopamine D4 receptor repeat sequences modulate expression. The Pharmacogenomics Journal, 3, 343348. CrossRefGoogle Scholar
Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 157. CrossRefGoogle Scholar
Shaw, D. S., Bell, R. Q., & Gilliom, M. (2000). A truly early starter model of antisocial behavior revisited. Clinical Child and Family Psychology Review, 3, 155172. CrossRefGoogle Scholar
Smith, H. J., Kryski, K. R., Sheikh, H. I., Singh, S. M., & Hayden, E. P. (2013). The role of parenting and dopamine D4 receptor gene polymorphisms in children’s inhibitory control. Developmental Science, 16, 515530. CrossRefGoogle Scholar
Smith, H. J., Sheikh, H. I., Dyson, M. W., Olino, T. M., Laptook, R. S., Durbin, C. E., … Klein, D. N. (2012). Parenting and child DRD4 genotype interact to predict children’s early emerging effortful control. Child Development, 83, 19321944. CrossRefGoogle Scholar
Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31, 137149. CrossRefGoogle Scholar
Thibodeau, E. L., Cicchetti, D., & Rogosch, F. A. (2015). Child maltreatment, impulsivity, and antisocial behavior in African American children: Moderation effects from a cumulative dopaminergic gene index. Development and Psychopathology, 27, 16211636. CrossRefGoogle Scholar
Valcan, D. S., Davis, H., & Pino-Pasternak, D. (2017). Parental behaviors predicting early childhood executive functions: A meta-analysis. Educational Psychology Review, 30, 607649. CrossRefGoogle Scholar
Van Heel, M., Bijttebier, P., Claes, S., Colpin, H., Goossens, L., Hankin, B., … Van Leeuwen, K. (2020). Parenting, effortful control, and adolescents’ externalizing problem behavior: Moderation by dopaminergic genes. Journal of Youth and Adolescence, 49, 252266. CrossRefGoogle Scholar
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2014). Genetic differential susceptibility on trial: Meta-analytic support from randomized controlled experiments. Development and Psychopathology, 27, 151162. CrossRefGoogle Scholar
Vrantsidis, D. M., Clark, C. A. C., Chevalier, N., Espy, K. A., & Wiebe, S. A. (2020). Socioeconomic status and executive function in early childhood: Exploring proximal mechanisms. Developmental Science, 23, 114. CrossRefGoogle Scholar
Wakschlag, L. S., Hill, C., Carter, A. S., Danis, B., Egger, H. L., Keenan, K., … Briggs-Gowan, M. J. (2008). Observational assessment of preschool disruptive behavior. Part I: Reliability of the Disruptive Behavior Diagnostic Observation Schedule (DB-DOS). Journal of the American Academy of Child and Adolescent Psychiatry, 47, 622631. CrossRefGoogle Scholar
Wakschlag, L. S., Hill, C., Danis, B., Grace, D., & Keenan, K. (2013). Parenting Clinical Observation Schedule (P-COS) for coding parent behavior during DB-DOS parent context (unpublished manual).Google Scholar
Wakschlag, L. S., Kistner, E. O., Pine, D. S., Biesecker, G., Pickett, K. E., Skol, A. D., Dukic, V., Blair, R. J., Leventhal, B. L., Cox, N., Burns, J., Kasza, K. E., Wright, R. J., & Cook, E. H. (2010). Interaction of prenatal exposure to cigarettes and MAOA genotype in pathways to youth antisocial behavior. Molecular Psychiatry, 15, 928937. CrossRefGoogle Scholar
Wakschlag, L. S., Pickett, K. E., Kasza, K. E., & Loeber, R. (2006). Is prenatal smoking associated with a developmental pattern of conduct problems in young boys? Journal of the American Academy of Child and Adolescent Psychiatry, 45, 461467. CrossRefGoogle Scholar
Wiebe, S. A., Clark, C. A. C., De Jong, D. M., Chevalier, N., Espy, K. A., & Wakschlag, L. S. (2015). Prenatal tobacco exposure and self-regulation in early childhood: Implications for developmental psychopathology. Development and Psychopathology, 27, 397409. CrossRefGoogle Scholar
Wiebe, S. A., Fang, H., Johnson, C., James, K. E., & Espy, K. A. (2014). Determining the impact of prenatal tobacco exposure on self-regulation at 6 months. Developmental Psychology, 50, 17461756. CrossRefGoogle Scholar
Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A. C., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108, 436452. CrossRefGoogle Scholar
Wigginton, J. E., Cutler, D. J., & Abecasis, R. (2005). A note on exact tests of Hardy-Weinberg equilibrium. American Journal of Human Genetics, 76, 887–883. CrossRefGoogle Scholar
Willoughby, M. T., Kupersmidt, J., Voegler-Lee, M., & Bryant, D. (2011). Contributions of hot and cool self-regulation to preschool disruptive behavior and academic achievement. Developmental Neuropsychology, 36, 162180. CrossRefGoogle Scholar
Wolfe, C. D., & Bell, M. A. (2004). Working memory and inhibitory control in early childhood: Contributions from physiology, temperament, and language. Developmental Psychobiology, 44, 6883. CrossRefGoogle Scholar
Wright, J. P., Schnupp, R., Beaver, K. M., Delisi, M., & Vaughn, M. (2012). Genes, maternal negativity, and self-control: Evidence of a gene x environment interaction. Youth Violence and Juvenile Justice, 10, 245260. CrossRefGoogle Scholar
Yacubian, J., & Büchel, C. (2009). The genetic basis of individual differences in reward processing and the link to addictive behavior and social cognition. Neuroscience, 164, 5571. CrossRefGoogle Scholar
Yang, B., Chan, R. C. K., Jing, J., Li, T., Sham, P., & Chen, R. Y. L. (2007). A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3’-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 144, 541550. CrossRefGoogle Scholar
Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6, 354360. Google Scholar
Supplementary material: File

Vrantsidis et al. supplementary material

Vrantsidis et al. supplementary material 1
Download Vrantsidis et al. supplementary material(File)
File 59.3 KB
Supplementary material: File

Vrantsidis et al. supplementary material

Vrantsidis et al. supplementary material 2

Download Vrantsidis et al. supplementary material(File)
File 59.3 KB