Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-vl2kb Total loading time: 0.479 Render date: 2021-11-27T15:13:18.637Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A biopsychosocial perspective on parenting and developmental psychopathology

Published online by Cambridge University Press:  17 December 2013

Susan D. Calkins*
Affiliation:
University of North Carolina at Greensboro
Cathi Propper
Affiliation:
University of North Carolina at Chapel Hill
W. Roger Mills-Koonce
Affiliation:
University of North Carolina at Chapel Hill
*
Address correspondence and reprint requests to: Susan D. Calkins, Department of Human Development and Family Studies, P.O. Box 26170, University of North Carolina at Greensboro, Greensboro, NC 27402-6170; Email: sdcalkin@uncg.edu.

Abstract

Although considerable research has examined the relations between parental behavior and a range of child developmental outcomes, much of this work has been conducted at a very broad level of behavioral analysis. A developmental psychopathology framework and recent research conducted within this framework point to the need for models of parenting and child psychopathology that offer greater specificity regarding processes that may be implicated in the effects of these relationships. In addition, recent animal work and some human work has focused more on the proximal biological and social mechanisms through which parenting affects child outcomes. Our conceptualization of parenting effects acknowledges that family and child factors are embedded in a dynamic biological and social context that is key to understanding developmental trajectories of child adjustment. In this paper, we review two areas of research that are illuminating the biological processes underlying links between parenting and child psychopathology: molecular genetics and psychophysiology. We adopt a biopsychosocial perspective on developmental psychopathology that implies that a set of hierarchically organized, but reciprocally interacting, processes, from the genetic to the environmental, provide the essential elements of both normative and nonnormative development (Gottlieb, 2007). New directions stimulated by this general approach are discussed, with an emphasis on the contextual and developmental issues and applications implied by such a perspective.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K., & Kumari, M. (2009). Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology, 34, 14231436.CrossRefGoogle ScholarPubMed
Albers, E. M., Riksen-Walraven, J. M., Sweep, F. C. G. J., & deWeerth, C. (2008). Maternal behavior predicts infant cortisol recovery from a mild everyday stressor. Journal of Child Psychology and Psychiatry, 49, 97103.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.CrossRefGoogle Scholar
Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., et al. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733738.CrossRefGoogle ScholarPubMed
Bates, J. E., Petit, G. S., Dodge, K. A., & Ridge, B. (1998). Interaction of temperamental resistance to control and restrictive parenting on the development of externalizing behavior. Developmental Psychology, 34, 982995.CrossRefGoogle ScholarPubMed
Bauer, A. M, Quas, J. A., & Boyce, W. T. (2002). Associations between physiological reactivity and children's behavior: Advantages of a multisystem approach. Journal of Developmental and Behavioral Pediatrics, 23, 102.CrossRefGoogle ScholarPubMed
Bazhenova, O. V., Plonskaia, O., & Porges, S. W. (2001). Vagal reactivity and affective adjustment in infants during interaction challenges. Child Development, 72, 13141326.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.CrossRefGoogle Scholar
Beauregard, M., Levesque, J., & Paquette, V. (2004). Neural basis of conscious and voluntary self-regulation of emotion. In Beauregard, M. (Ed.), Consciousness, emotional self-regulation and the brain (pp. 163194). Philadelphia, PA: John Benjamins.CrossRefGoogle Scholar
Belsky, J. (2005). Differential susceptibility to rearing influence: An evolutionary hypothesis and some evidence. In Ellis, B. & Bjorklund, D. (Eds.), Origins of the social mind: Evolutionary psychology and child development (pp. 139163). New York: Guilford Press.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., Fish, M., & Isabella, R. A. (1991). Continuity and discontinuity in infant negative and positive emotionality: Family antecedents and attachment consequences. Developmental Psychology, 27, 421431.CrossRefGoogle Scholar
Bennett, A. J., Lesch, K. P., Heils, A., Long, J. C., Lorenz, J. G., Shoaf, S. E., et al. (2002). Early experience and serotonin transporter gene variation interact to influence primate CNS function. Molecular Psychiatry 7, 118122.CrossRefGoogle ScholarPubMed
Bernard, K., & Dozier, M. (2010). Examining infants' cortisol responses to laboratory tasks among children varying in attachment disorganization: Stress reactivity or return to baseline? Developmental Psychology, 46, 17711778.CrossRefGoogle ScholarPubMed
Blair, C., Granger, D. A., Kivlighan, K. T., Mills-Koonce, R., Willoughby, M., Greenberg, M. T., et al. (2008). Maternal and child contributions to cortisol response to emotional arousal in young children from low-income, rural communities. Developmental Psychology, 44, 10951109.CrossRefGoogle ScholarPubMed
Blair, C., Granger, D. A., Willoughby, M., Mills-Koonce, W. R., Cox, M. J., Greenberg, M. T., et al. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 19701984.CrossRefGoogle ScholarPubMed
Booth, A., McHale, S., & Lansdale, N. (Eds.). (2011). Biosocial research contributions to understanding family processes and problems. New York: Springer.CrossRefGoogle Scholar
Bowlby, J. (1969). Attachment and loss: Vol. 1. Attachment. London: Hogarth Press.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Boyce, W., Torsheim, T., Currie, C., & Zambon, A. (2006). The family affluence scale as a measure of national wealth: Validation of an adolescent self-report measure. Social Indicators Research, 78, 473487.CrossRefGoogle Scholar
Bremner, J. D., & Vermetten, E. (2001). Stress and development: Behavioral and biological consequences. Developmental Psychopathology, 13, 473489.CrossRefGoogle Scholar
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Nazeer, A., et al. (2003). MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. American Journal of Psychiatry, 160, 924932.CrossRefGoogle ScholarPubMed
Brotman, D. J., Goldern, S. H., & Wittstein, I. S. (2007). The cardiovascular toll of stress. Lancet, 370, 10891100.CrossRefGoogle ScholarPubMed
Cairns, R. B., & Rodkin, P. C. (1998). Phenomena regained: From configurations to pathways. In Cairns, R. B., Bergman, L. R., & Kagan, J. (Eds.), Methods and models for studying the individual (pp. 245265). Thousand Oaks, CA: Sage.Google Scholar
Calkins, S. D. (1997). Cardiac vagal tone indices of temperamental reactivity and behavioral regulation in young children. Developmental Psychobiology, 31, 125135.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Calkins, S. D. (2011). Caregiving as co-regulation: Psychobiological processes and child functioning. In Booth, A., McHale, S., & Lansdale, N. (Eds.), Biosocial research contributions to understanding family processes and problems (pp. 4960). New York: Springer.CrossRefGoogle Scholar
Calkins, S. D., & Dedmon, S. E. (2000). Physiological and behavioral regulation in two-year-old children with aggressive/destructive behavior problems. Journal of Abnormal Child Psychology, 28, 103118. doi:10.1023/A:1005112912906CrossRefGoogle ScholarPubMed
Calkins, S. D., & Fox, N. A. (1992). The relations among infant temperament, security of attachment, and behavioral inhibition at 24 months. Child Development, 63, 14561472.CrossRefGoogle Scholar
Calkins, S. D., & Fox, N. A. (2002). Self-regulatory processes in early personality development: A multilevel approach to the study of childhood social withdrawal and aggression. Development and Psychopathology, 14, 477498. doi:10.1017/S095457940200305XCrossRefGoogle Scholar
Calkins, S. D., Graziano, P. A., Berdan, L. E., Keane, S. P., & Degnan, K. A. (2008). Predicting cardiac vagal regulation in early childhood from maternal-child relationship quality during toddlerhood. Developmental Psychobiology, 50, 751766. doi:10.1002/dev.20344CrossRefGoogle ScholarPubMed
Calkins, S. D., Graziano, P. A., & Keane, S. P. (2007). Cardiac vagal regulation differentiates among children at risk for behavior problems. Biological Psychology, 74, 144153. doi:10.1016/j.biopsycho.2006.09.005CrossRefGoogle ScholarPubMed
Calkins, S. D., & Keane, S. P. (2004). Cardiac vagal regulation across the preschool period: Stability, continuity, and implications for childhood adjustment. Developmental Psychobiology 45, 101112.CrossRefGoogle ScholarPubMed
Calkins, S. D., Smith, C. L., Gill, K. L., & Johnson, M. C. (1998). Maternal interactive style across contexts: Relations to emotional, behavioral and physiological regulation during toddlerhood. Social Development, 7, 350369.CrossRefGoogle Scholar
Cannon, W. B. (1929). Bodily changes in pain, hunger, fear and rage. Southern Medical Journal, 22, 870.CrossRefGoogle Scholar
Carrion, V. G., Weems, C. F., Ray, R., & Reiss, A. L. (2002). Toward an empirical definition of pediatric PTSD: The phenomenology of PTSD symptoms in youth. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 166173.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854. doi:10.1126/science.1072290CrossRefGoogle ScholarPubMed
Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders. Archives of General Psychiatry, 53, 10331039.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301), 386389. doi:10.1126/science.1083968CrossRefGoogle ScholarPubMed
Champagne, D. L., Bagot, R. C., van Hasselt, F., Ramakers, G., Meaney, M. J., de Kloet, E., et al. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 60376045. doi:10.1523/jneurosci.0526-08.2008CrossRefGoogle Scholar
Champoux, M., Bennett, A., Shannon, C., Higley, J. D., Lesch, K. P., & Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7, 10581063.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1993). Developmental psychopathology: Reactions, reflections, projections. Developmental Review, 13, 471502.CrossRefGoogle Scholar
Cicchetti, D., & Dawson, G. (2002). Multiple levels of analysis [Editorial]. Development and Psychopathology, 14, 417420.CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600.CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677694.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Thibodeau, E. L. (2012). The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by tryptophan hydroxylase, serotonin transporter, and monoamine oxidase A genes. Development and Psychopathology, 24, 907928.CrossRefGoogle ScholarPubMed
Clincy, A., Mills-Koonce, W. R., & the Family Life Project Key Investigators. (in press). Trajectories of intrusive parenting during toddlerhood and school adjustment for low-income African American boys. American Journal of Orthopsychiatry.Google Scholar
Conradt, E., & Ablow, J. (2010). Infant physiological response to the still-face paradigm: Contributions of maternal sensitivity and infants' early regulatory behavior. Infant Behavior and Development, 33, 251265.CrossRefGoogle ScholarPubMed
Corter, C., & Fleming, A. (1995). The psychobiology of maternal behavior in human beings. In Bornstein, M. (Ed.). Handbook of parenting: Vol. 2. Biology and ecology of parenting (pp. 141181). New York: Guilford Press.Google Scholar
Cox, M. J., Mills-Koonce, W. R., Propper, C. B., & Gariepy, J. L. (2010). Systems theory and cascades in developmental psychopathology. Development and Psychopathology, 22, 497506.CrossRefGoogle ScholarPubMed
Crowell, S. E., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115, 174178. doi:10.1037/0021-843X.115.1.174CrossRefGoogle ScholarPubMed
Cummings, E. M., Davies, P. T., & Campbell, S. B. (2000). Developmental psychopathology and family process: Theory, research and clinical implications. New York: Guilford Press.Google Scholar
Cummings, E., El-Sheikh, C. D., Kouros, C. D., & Keller, P. S. (2007). Children's skin conductance reactivity as a mechanism of risk in the context of parental depressive symptoms. Journal of Child Psychology and Psychiatry, 48, 436445. doi:10.1111/j.1469-7610.2006.01713.CrossRefGoogle ScholarPubMed
Dadds, M. R., & Salmon, K. (2003). Punishment insensitivity and parenting: Temperament and learning as interacting risks for antisocial behavior. Clinical Child and Family Psychology Review, 6, 6986.CrossRefGoogle ScholarPubMed
Davies, P. T., & Cummings, E. (1998). Exploring children's emotional security as a mediator of the link between marital relations and child adjustment. Child Development, 69, 124139. doi:10.2307/1132075CrossRefGoogle ScholarPubMed
Deater-Deckard, K., & Dodge, K. A. (1997). Spare the rod, spoil the authors: Emerging themes in research on parenting and child development. Psychological Inquiry, 8, 230235.CrossRefGoogle Scholar
De Bellis, M. D., Keshavan, M., Clark, D. B., Casey, B. J., Giedd, J., Boring, A. M., et al. (1999). Developmental traumatology Part II: Brain development. Biological Psychiatry, 45, 12711284.CrossRefGoogle ScholarPubMed
De Bellis, M. D., & Kuchibhatla, M. (2006). Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry, 60, 697.CrossRefGoogle ScholarPubMed
de Kloet, E. R., & Oitzl, M. S. (2003). Who cares for a stressed brain? The mother, the kid or both? Neurobiology of Aging, 24(Suppl. 1), S61S65; discussion S67–S68.CrossRefGoogle Scholar
de Kloet, E. R., Oitzl, M. S., & Joels, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422426.CrossRefGoogle ScholarPubMed
Delahanty, D. L., Nugent, N. R., Christopher, N. C., & Walsh, M. (2005). Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims. Psychoneuroendocrinology, 30, 121128.CrossRefGoogle ScholarPubMed
Edwards, A. C., Dodge, K. A., Latendresse, S. J., Lansford, J. E., Bates, J. E., Pettit, G. S., et al. (2010). MAOA-uVNTR and early physical discipline interact to influence delinquent behavior. Journal of Child Psychology and Psychiatry, 51, 679687. doi:10.1111/j.1469-7610.2009.02196.xCrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Ellis, B., & Nigg, J. (2009). Parenting practices and attention-deficit/ hyperactivity disorder: New findings suggest partial specificity of effects. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 19.Google Scholar
Engfer, A. (1993). Antecedents and consequences of shyness in boys and girls: A 6-year longitudinal study. In Rubin, H. & Asendorpf, J. B. (Eds.), Social withdrawal, inhibition, and shyness (pp. 4980). Hillsdale, NJ: Erlbaum.Google Scholar
Enoch, M. A., Steer, C. D., Newman, T. K., Gibson, N. N., & Goldman, D. D. (2010). Early life stress, MAOA, and gene–environment interactions predict behavioral disinhibition in children. Genes, Brain and Behavior, 9, 6574. doi:10.1111/j.1601-183X.2009.00535.xCrossRefGoogle ScholarPubMed
Erath, S. A., El-Sheikh, M., Hinnant, J., & Cummings, E. (2011). Skin conductance level reactivity moderates the association between harsh parenting and growth in child externalizing behavior. Developmental Psychology, 47, 693706.CrossRefGoogle ScholarPubMed
Erickson, K., Drevets, W., & Schulkin, J. (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience & Biobehavioral Reviews, 27, 233246.CrossRefGoogle ScholarPubMed
Evans, G. W. (2003). A multimethodological analysis of cumulative risk and allostatic load among rural children. Developmental Psychology, 39, 924933.CrossRefGoogle ScholarPubMed
Evans, G. W. (2004). The environment of childhood poverty. American Psychologist, 59, 7792.CrossRefGoogle ScholarPubMed
Evans, W. E., & Relling, M. V. (1999). Pharmacogenomics: Translating functional genomics into rational therapeutics. Science, 286, 487491.CrossRefGoogle ScholarPubMed
Fisher, P. A., Stoolmiller, M., Gunnar, M. R., & Burraston, B. O. (2007). Effects of a therapeutic intervention for foster preschoolers on diurnal cortisol activity. Psychoneuroendocrinology, 32, 892905.CrossRefGoogle ScholarPubMed
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., et al. (2004). Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738744. doi:10.1001/archpsyc.61.7.738CrossRefGoogle ScholarPubMed
Fowles, D. C., Kochanska, G., & Murray, K. (2000). Electrodermal activity and temperament in preschool children. Psychophysiology, 37, 777787. doi:10.1111/1469-8986.3760777CrossRefGoogle ScholarPubMed
Fox, N. A. (1989). The psychophysiological correlates of emotional reactivity during the first year of life. Developmental Psychology, 25, 364372.CrossRefGoogle Scholar
Fox, N. A., Nichols, K. E., Henderson, H. A., Rubin, K., Schmidt, L., Hamer, D., et al. (2005). Evidence for a gene–environment interaction in predicting behavioral inhibition in middle childhood. Psychological Science, 16, 921926. doi:10.1111/j.1467-9280.2005.01637.CrossRefGoogle ScholarPubMed
Frazzetto, G., Di Lorenzo, G., Carola, V., Proietti, L.,Sokolowska, E., Siracusano, A., et al. (2007). Early trauma and increased risk for physical aggression during adulthood: The moderating role of MAOA genotype. PLoS ONE, 2, e486. Retrieved from http://www.journal.pone.0000486CrossRefGoogle Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology 30, 10101016.CrossRefGoogle ScholarPubMed
Frigerio, A., Ceppi, E., Rusconi, M., Giorda, R., Raggi, M. E., & Fearon, P. (2009). The role played by the interaction between genetic factors and attachment in the stress response in infancy. Journal of Child Psychology and Psychiatry 50, 15131522.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L. M., Raine, A., Loeber, R., Stouthamer-Loeber, M., & Steinhauer, S. R. (2002). Serious delinquent behavior, sensation seeking, and electrodermal arousal. Journal of Abnormal Child Psychology, 30, 477486.CrossRefGoogle ScholarPubMed
Gershoff, E. T. (2002). Parental corporal punishment and associated child behaviors and experiences: A meta-analytic and theoretical review. Psychological Bulletin, 128, 539579.CrossRefGoogle ScholarPubMed
Goldsmith, H. H., & Hewitt, E. C. (2003). Validity of parental report of temperament: Distinctions and needed research. Infant Behavior & Development, 26, 108111. doi:10.1016/S0163-6383(02)00172-8CrossRefGoogle Scholar
Goldsmith, H. H., Lemery, K. S., Buss, K. A., & Campos, J. J. (1999). Genetic analyses of focal aspects of infant temperament. Developmental Psychology, 35, 972985. doi:10.1037/0012-1649.35.4.972CrossRefGoogle ScholarPubMed
Gordis, E. B., Granger, D.A., Susman, E. J., & Trickett, P. K., (2008). Salivary alpha amylase-cortisol asymmetry in maltreated youth. Hormones and Behavior 53, 96103.CrossRefGoogle ScholarPubMed
Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27, 413.CrossRefGoogle Scholar
Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 111.CrossRefGoogle ScholarPubMed
Granger, D. A., Stansbury, K., & Henker, B. (1994). Preschoolers' behavioral and neuroendocrine responses to social challenge. Merrill–Palmer Quarterly, 40, 2041.Google Scholar
Granger, D. A., Weisz, J. R., McCracken, J. M., Ikeda, S. C., & Douglas, P. (1996). Reciprocal influences among adrenocortical activation, psychosocial processes, and the behavioral adjustment of clinic-referred children. Child Development, 67, 32503262.CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.CrossRefGoogle Scholar
Gunnar, M. R., & Quevedo, K. M. (2008). Early care experiences and HPA axis regulation in children: A mechanism for later trauma vulnerability. Progress in Brain Research, 167, 137149.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515.CrossRefGoogle Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and association with puberty. Development and Psychopathology, 21, 6985.CrossRefGoogle Scholar
Haberstick, B. C., Lessem, J. M., Hopfer, C. J., Smolen, A., Ehringer, M. A., Timberlake, D., et al. (2005). Monoamine oxidase A (MAOA) and antisocial behaviors in the presence of childhood and adolescent maltreatment. American Journal of Medical Genetics, 135B, 5964.CrossRefGoogle ScholarPubMed
Halligan, S. L., Herbert, J., Goodyer, I., & Murray, L. (2007). Disturbances in morning cortisol secretion in association with maternal postnatal depression predict subsequent depressive symptomatology in adolescents. Biological Psychiatry, 62, 4046.CrossRefGoogle ScholarPubMed
Ham, J., & Tronick, E. Z. (2006). Infant resilience to the stress of the still-face. Annals of the New York Academy of Sciences, 1094, 297302.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 29, 400403.CrossRefGoogle Scholar
Heim, C., Newport, D. J., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2001). Altered pituitary–adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. American Journal of Psychiatry, 158, 575581.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., et al. (2000). Pituitary–adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592597.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33, 693710.CrossRefGoogle ScholarPubMed
Herrmann, M. J., Huter, T., Muller, F., Muhlberger, A., Pauli, P., Reif, A., et al. (2007). Additive effects of serotonin transporter and tryptophan hydroxylase–2 gene variation on emotional processing. Cerebral Cortex, 17, 11601163.CrossRefGoogle ScholarPubMed
Hertsgaard, L., Gunnar, M., Erickson, M., & Nachmias, M. (1995). Adrenocortical response to the strange situation in infants with disorganized/disoriented attachment relationships. Child Development, 66, 11001106.CrossRefGoogle Scholar
Hertzman, C., & Boyce, T. (2010–03). How experience gets under the skin to create gradients in developmental health. Annual Review of Public Health, 31, 329347. doi:10.1146/annurev.publhealth.012809.103538CrossRefGoogle ScholarPubMed
Hill-Soderlund, A. L., Mills-Koonce, W., Propper, C., Calkins, S. D., Granger, D. A., Moore, G. A., et al. (2008). Parasympathetic and sympathetic responses to the strange situation in infants and mothers from avoidant and securely attached dyads. Developmental Psychobiology, 50, 361376. doi:10.1002/dev.20302CrossRefGoogle ScholarPubMed
Hofer, M. A. (1987). Early social relationships: A psychobiologist's view. Child Development, 58, 633647.CrossRefGoogle ScholarPubMed
Horwitz, B. N., & Neiderhiser, J. M. (2011). Gene–environment interplay, family relationships, and child adjustment. Journal of Marriage and Family, 73, 804816.CrossRefGoogle ScholarPubMed
Huffman, L. C., Bryan, Y., del Carmen, R., Pederson, F., Doussard-Roosevelt, J., & Porges, S. (1998). Infant temperament and cardiac vagal tone: Assessments at twelve weeks of age. Child Development, 69, 624635.CrossRefGoogle ScholarPubMed
Huizinga, D., Haberstick, B. C., Smolen, A., Menard, S., Young, S. E., Corley, R. P., et al. (2006). Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biological Psychiatry, 60, 677683. doi:10.1016/j.biopsych.2005.12.022CrossRefGoogle ScholarPubMed
Hussey, J. M., Marshall, J. M., English, D. J., Knight, E. D., Lau, A. S., Dubowitz, H., et al. (2005). Defining maltreatment according to substantiation: Distinction without a difference? Child Abuse & Neglect, 29, 479492.CrossRefGoogle ScholarPubMed
Ispa, J. M., Fine, M. A., Halgunseth, L. C., Harper, S., Robinson, J., Boyce, L., et al. (2004). Maternal intrusiveness, maternal warmth, and mother–toddler relationship outcomes: Variations across low-income ethnic and acculturation groups. Child Development, 75, 16131631.CrossRefGoogle ScholarPubMed
Johnston, T. D., & Edwards, L. (2002). Genes, interactions and the development of behavior. Psychological Review, 109, 2634.CrossRefGoogle ScholarPubMed
Kim-Cohen, J. J., Caspi, A. A., Taylor, A. A., Williams, B. B., Newcombe, R. R., Craig, I. W., et al. (2006). MAOA, maltreatment, and gene–environment interaction predicting children's mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903913. doi:10.1038/sj.mp.4001851CrossRefGoogle ScholarPubMed
King, J. A., Mandansky, D., King, S., Fletcher, K., & Brewer, J. (2001). Early sexual abuse and low cortisol. Psychiatry & Clinical Neurosciences, 55, 7174.CrossRefGoogle ScholarPubMed
Kivlighan, K. T., & Granger, D. A. (2006). Salivary α-amylase response to competition: Relation to gender, previous experience, and attitudes. Psychoneuroendocrinology, 31, 703714. doi:10.1016/j.psyneuen.2006.01.007CrossRefGoogle ScholarPubMed
Kochanska, G., Philibert, R. A., & Barry, R. A. (2009). Interplay of genes and early mother–child relationship in the development of self-regulation from toddler to preschool age. Journal of Child Psychology and Psychiatry, 50, 13311338. doi:10.1111/j.1469-7610.2008.02050.xCrossRefGoogle ScholarPubMed
Kohl, P. L., Jonson-Reid, M., & Drake, B. (2009). Time to leave substantiation behind: Findings from a national probability study. Child Maltreatment, 14, 1726.CrossRefGoogle ScholarPubMed
Lahey, B. B., Rathouz, P. J., Lee, S. S., Chronis-Tuscano, A., Pelham, W. E., Waldman, I. D., et al. (2011). Interactions between early parenting and a polymorphism of the child's dopamine transporter gene in predicting future child conduct disorder symptoms. Journal of Abnormal Psychology, 120, 3345. doi:10.1037/a0021133CrossRefGoogle Scholar
Lengua, L. J. (2012). Poverty, the development of effortful control, and children's academic, social, and emotional adjustment. In Maholmes, V. & King, R. B. (Eds.), The Oxford handbook of poverty and child development (pp. 491511). New York: Oxford University Press.Google Scholar
Li, J. J., & Lee, S. S. (2012). Association of positive and negative parenting behavior with childhood ADHD: Interactions with offspring monoamine oxidase A (MAO-A) genotype. Journal of Abnormal Child Psychology, 40, 165175. doi:10.1007/s10802-011-9553-zCrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3, 799806.CrossRefGoogle ScholarPubMed
Main, M. (1990). Cross-cultural studies of attachment organization: Recent studies, changing methodologies, and the concept of conditional strategies. Human Development, 33, 4861.CrossRefGoogle Scholar
Matheny, A. P. Jr. (1986). Injuries among toddlers: Contributions from child, mother, and family. Journal of Pediatric Psychology, 11, 163176.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine 338, 171179.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry 48, 721731.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences, 896, 3047.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 215.CrossRefGoogle ScholarPubMed
Meaney, M. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81, 4971.CrossRefGoogle ScholarPubMed
Meaney, M. J., & Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neuroscience, 28, 456463.CrossRefGoogle Scholar
Meunier, J., Bisceglia, R., & Jenkins, J. M. (2012). Differential parenting and children's behavioral problems: Curvilinear associations and mother–father combined effects. Developmental Psychology, 48, 9871002. doi:10.1037/a0026321CrossRefGoogle ScholarPubMed
Michel, G., & Moore, C. (1995). Developmental psychobiology: An interdisciplinary science. Cambridge, MA: MIT Press.Google Scholar
Mills-Koonce, W. R., Garrett-Peters, P., Barnett, M., Granger, D., Blair, C., Cox, M. J., et al. (2011). Father contributions to cortisol responses in infancy and early childhood. Developmental Psychology, 47, 388395. doi:10.1037/a0021066CrossRefGoogle Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology: Concepts, research strategies, and implications for research, intervention, and public understanding of genetics. Perspectives on Psychological Science, 1, 527. doi:10.1111/j.1745-6916.2006.00002.xCrossRefGoogle ScholarPubMed
Moore, G. A., & Calkins, S. D. (2004). Infants' vagal regulation in the still-face paradigm is related to dyadic coordination of mother–infant interaction. Developmental Psychology, 40, 10681080. doi:10.1037/0012-1649.40.6.1068CrossRefGoogle ScholarPubMed
Moore, G. A., Hill-Soderlund, A. L., Propper, C. B., Calkins, S. D., Mills-Koonce, W., & Cox, M. J. (2009). Mother–infant vagal regulation in the face-to-face still-face paradigm is moderated by maternal sensitivity. Child Development, 80, 209223. doi:10.1111/j.1467-8624.2008.01255.xCrossRefGoogle ScholarPubMed
Nater, U. M., & Rohleder, N. N. (2009). Salivary alpha-amylase as a noninvasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34, 486496. doi:10.1016/j.psyneuen.2009.01.014CrossRefGoogle Scholar
Nesse, R. M., & Young, E. A. (2000). The evolutionary origins and functions of the stress response. In Fink, G. (Ed.), Encyclopedia of stress (Vol. 2, pp. 7984). San Diego, CA: Academic Press.Google Scholar
Obradović, J. (2012). How can the study of physiological reactivity contribute to our understanding of adversity and resilience processes in development? Development and Psychopathology, 24, 371387. doi:10.1017/S0954579412000053CrossRefGoogle Scholar
Obradović, J., & Boyce, W. T. (2009). Individual differences in behavioral, physiological, and genetic sensitivities to contexts: Implications for development and adaptation. Developmental Neuroscience, 31, 300308.Google ScholarPubMed
Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289. doi:10.1111/j.1467-8624.2009.01394.xCrossRefGoogle ScholarPubMed
O'Neal, C. R., Brotman, L., Huang, K., Gouley, K., Kamboukos, D., Calzada, E. J., et al. (2010). Understanding relations among early family environment, cortisol response, and child aggression via a prevention experiment. Child Development, 81, 290305. doi:10.1111/j.1467-8624.2009.01395.xCrossRefGoogle Scholar
Oosterlaan, J., Geurts, H. M., Knol, D. L., & Sergeant, J. A. (2005). Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder. Psychiatry Research, 134, 110. doi:10.1016/j.psychres.2004.12.005CrossRefGoogle ScholarPubMed
Oosterman, M., De Schipper, J., Fisher, P., Dozier, M., & Schuengel, C. (2010). Autonomic reactivity in relation to attachment and early adversity among foster children. Development and Psychopathology, 22, 109118. doi:10.1017/S0954579409990290CrossRefGoogle ScholarPubMed
Patterson, G. R., Reid, J. B., & Dishion, T. J. (1992). Antisocial boys. Eugene, OR: Castalia.Google Scholar
Pendry, P., & Adam, E. K. (2007). Associations between parents' marital functioning, maternal parenting quality, maternal emotion and child cortisol levels. International Journal of Behavioral Development, 31, 218231.CrossRefGoogle Scholar
Pettit, G. S., Bates, J. E., & Dodge, K. A. (1997). Supportive parenting, ecological context, and children's adjustment: A seven-year longitudinal study. Child Development, 68, 908923.Google Scholar
Pfeffer, C. R., Altemus, M., Heo, M., & Jiang, H. (2007). Salivary cortisol and psychopathology in children bereaved by the September 11, 2001, terror attacks. Biological Psychiatry, 61, 957965.CrossRefGoogle ScholarPubMed
Porges, S. W. (1992). Autonomic regulation and attention. In Campbell, B. M., Hayne, H., & Richardson, R. (Eds.), Attention and information processing in infants and adults (pp. 201223). Hillsdale, NJ: Erlbaum.Google Scholar
Porges, S. W., Doussard-Roosevelt, J. A., Portales, A. L., & Greenspan, S. I. (1996). Infant regulation of the vagal “brake” predicts child behavior problems: A psychobiological model of social behavior. Developmental Psychobiology, 29, 697712.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Porter, C. L. (2003). Coregulation in mother–infant dyads: Links to infants' cardiac vagal tone. Psychological Reports, 92, 307319. doi:10.2466/PR0.92.1.307-319CrossRefGoogle ScholarPubMed
Posner, M. I., Rothbart, M. K., & Sheese, B. E. (2007). Attention genes. Developmental Science, 10, 2429. doi:10.1111/j.1467-7687.2007.00559.xCrossRefGoogle ScholarPubMed
Propper, C., & Moore, G. A. (2006). The influence of parenting on infant emotionality: A multi-level psychobiological perspective. Developmental Review, 26, 427460. doi:10.1016/j.dr.2006.06.003CrossRefGoogle Scholar
Propper, C., Moore, G., Mills-Koonce, R., Halpern, C., Hill, A., Calkins, S., et al. (2008). Gene–environment contributions to the development of vagal tone. Child Development, 79, 13781395.CrossRefGoogle Scholar
Propper, C., Willoughby, M., Halpern, C. T., Carbone, M. A., & Cox, M. (2007). Parenting quality, DRD4, and the prediction of externalizing and internalizing behaviors in early childhood. Developmental Psychobiology, 49, 619632.CrossRefGoogle ScholarPubMed
Raison, C. L., & Miller, A. H. (2003). When not enough is too much: The role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. American Journal of Psychiatry, 160, 15541565.CrossRefGoogle ScholarPubMed
Richters, J. E. (1997). The Hubble hypothesis and the developmentalist's dilemma. Development and Psychopathology, 9, 193229CrossRefGoogle ScholarPubMed
Rothbart, M. K., Ahadi, S. A., & Evans, D. E. (2000). Temperament and personality: Origins and outcomes. Journal of Personality and Social Psychology, 78, 122135.CrossRefGoogle ScholarPubMed
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Damon, W., Lerner, R., & Eisenberg, N. (Eds.), Handbook of child psychology: Social, emotional, and personality development (6th ed., pp. 99166). Hoboken, NJ: Wiley.Google Scholar
Rothbaum, F., & Weisz, J. R. (1994). Parental caregiving and child externalizing behavior in nonclinical samples: A meta-analysis. Psychological Bulletin, 116, 5574.CrossRefGoogle ScholarPubMed
Rutter, M., & Sroufe, L. (2000). Developmental psychopathology: Concepts and challenges. Development and Psychopathology, 12, 265296. doi:10.1017/S0954579400003023CrossRefGoogle ScholarPubMed
Sadeh, N., Javdani, S., Jackson, J. J., Reynolds, E. K., Potenza, M. N., Gelernter, J., et al. (2010). Serotonin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. Journal of Abnormal Psychology, 119, 604609. doi:10.1037/a0019709CrossRefGoogle ScholarPubMed
Sameroff, A. (2010). A unified theory of development: A dialectic integration of nature and nurture. Child Development, 81, 622.CrossRefGoogle ScholarPubMed
Santa Ana, E. J., Saladin, M. E., Back, S. E., Waldrop, A. E., Spratt, E. G., McRae, A. L., et al. (2006). PTSD and the HPA axis: Differences in response to the cold pressor task among individuals with child vs. adult trauma. Psychoneuroendocrinology, 31, 501509.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 5589.Google ScholarPubMed
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19, 10391046. doi:10.1017/S0954579407000521CrossRefGoogle ScholarPubMed
Sherwood, A. (1995). Use of impedance cardiography in cardiovascular reactivity research. In Blascovich, J. & Katkin, E. S. (Eds.), Cardiovascular reactivity to psychological stress and disease (pp. 157199). Washington, DC: American Psychological Association.Google Scholar
Shirtcliff, E. A., Granger, D. A., Booth, A., & Johnson, D. (2005). Low salivary cortisol and externalizing problem behavior in youth. Development and Psychopathology, 17, 118.CrossRefGoogle ScholarPubMed
Shonkoff, J. (2010). Building a new biodevelopmental framework to guide the future of early childhood policy. Child Development, 81, 49–71, 357367.CrossRefGoogle ScholarPubMed
Spangler, G. G., & Grossmann, K. E. (1993). Biobehavioral organization in securely and insecurely attached infants. Child Development, 64, 14391450.CrossRefGoogle ScholarPubMed
Sroufe, L. A. (1996). Emotional development: The organization of emotional life in the early years. New York: Cambridge University Press.CrossRefGoogle Scholar
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.CrossRefGoogle ScholarPubMed
Suess, P. E., Porges, S. W., & Plude, D. J. (1994). Cardiac vagal tone and sustained attention in school-age children. Psychophysiology, 31, 1722.CrossRefGoogle ScholarPubMed
Sulik, M. J., Eisenberg, N., Lemery-Chalfant, K., Spinrad, T. L., Silva, K. M., Eggum, N. D., et al. (2012). Interactions between serotonin transporter gene haplotypes and quality of mothers' parenting predict the development of children's noncompliance. Developmental Psychology, 48, 740754. doi:10.1037/a0025938CrossRefGoogle ScholarPubMed
Suomi, S. J. (2004). How gene–environment interactions shape biobehavioral development: Lessons from studies with rhesus monkeys. Research in Human Development, 1, 205222.CrossRefGoogle Scholar
Suomi, S. J. (2005). Genetic and environmental factors influencing the expression of impulsive aggression and serotonergic functioning in rhesus monkeys. In Tremblay, R. E., Hartup, W. W., & Archer, J. (Eds.), Developmental origins of aggression (pp. 6382). New York: Guilford Press.Google Scholar
Suomi, S. J. (2006). Risk, resilience, and gene × environment interactions in rhesus monkeys. Annals of the New York Academy of Sciences, 1094, 5262.CrossRefGoogle ScholarPubMed
Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience Biobehavioral Reviews, 30, 376389.CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M., & Harden, K. (2012). Intellectual interest mediates gene × socioeconomic status interaction on adolescent academic achievement. Child Development, 83, 743757.Google ScholarPubMed
van den Hoofdakker, B. J., Nauta, M. H., Dijck-Brouwer, D., van der Veen-Mulders, L., Sytema, S., Emmelkamp, P. G., et al. (2012). Dopamine transporter gene moderates response to behavioral parent training in children with ADHD: A pilot study. Developmental Psychology, 48, 567574.CrossRefGoogle ScholarPubMed
Vanyukov, M., Maher, B., Devlin, B., Kirillova, G., Kirisci, L., Yu, L., et al. (2007). The MAOA promoter polymorphism, disruptive behavior disorders, and early onset substance use disorder: Gene–environment interaction. Psychiatric Genetics, 17, 323332.CrossRefGoogle ScholarPubMed
Waldman, I. D. (2007). Gene–environment interactions reexamined: Does mother's marital stability interact with the dopamine receptor D2 gene in the etiology of childhood attention-deficit/hyperactivity disorder? Development and Psychopathology, 19, 11171128. doi:10.1017/S0954579407000570CrossRefGoogle ScholarPubMed
Weems, C. F., Zakem, A., Costa, N. M., Cannon, M. F., & Watts, S. E. (2005). Physiological response and childhood anxiety: Association with symptoms of anxiety disorders and cognitive bias. Journal of Clinical Child and Adolescent Psychology, 34, 712723.CrossRefGoogle ScholarPubMed
Widom, C. S., & Brzustowicz, L. M. (2006). MAOA and the “cycle of violence”: Childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biological Psychiatry, 60, 684689.CrossRefGoogle ScholarPubMed
Willoughby, M. T., Mills-Koonce, W. R., Propper, C. B., & Waschbusch, D. A. (2013). Observed parenting behaviors interact with a polymorphism of the brain-derived neurotrophic factor gene to predict the emergence of oppositional–defiant and callous–unemotional behaviors at age 3 years. Development and Psychopathology, 25, 903917.CrossRefGoogle ScholarPubMed
Wright, J., Schnupp, R., Beaver, K. M., Delisi, M., & Vaughn, M. (2012). Genes, maternal negativity, and self-control: Evidence of a gene × environment interaction. Youth Violence and Juvenile Justice, 10, 245260. doi:10.1177/1541204011429315CrossRefGoogle Scholar
Young, S. E., Smolen, A., Hewitt, J. K., Haberstick, B. C., Stallings, M. C., Corley, R. P., et al. (2006). Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: Failure to confirm in adolescent patients. American Journal of Psychiatry, 163, 10191025.CrossRefGoogle ScholarPubMed
48
Cited by