Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4k54s Total loading time: 0.306 Render date: 2021-12-06T20:46:05.919Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Parity conjectures for elliptic curves over global fields of positive characteristic

Published online by Cambridge University Press:  04 May 2011

Fabien Trihan
Affiliation:
School of Mathematical Sciences, University Nottingham, Nottingham NG7 2RD, UK (email: fabien.trihan@nottingham.ac.uk)
Christian Wuthrich
Affiliation:
School of Mathematical Sciences, University Nottingham, Nottingham NG7 2RD, UK (email: christian.wuthrich@gmail.com)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the p-parity conjecture for elliptic curves over global fields of characteristic p>3. We also present partial results on the -parity conjecture for primes p.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[Cas65]Cassels, J. W. S., Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180199.Google Scholar
[CFKS10]Coates, J., Fukaya, T., Kato, K. and Sujatha, R., Root numbers, Selmer groups, and non-commutative Iwasawa theory, J. Algebraic Geom. 19 (2010), 1997.CrossRefGoogle Scholar
[Dok05]Dokchitser, V., Root numbers of non-abelian twists of elliptic curves, Proc. Lond. Math. Soc. (3) 91 (2005), 300324, with an appendix by Tom Fisher.CrossRefGoogle Scholar
[DD08]Dokchitser, T. and Dokchitser, V., Parity of ranks for elliptic curves with a cyclic isogeny, J. Number Theory 128 (2008), 662679.CrossRefGoogle Scholar
[DD09a]Dokchitser, T. and Dokchitser, V., Regulator constants and the parity conjecture, Invent. Math. 178 (2009), 2371.CrossRefGoogle Scholar
[DD09b]Dokchitser, T. and Dokchitser, V., Root numbers and parity of ranks for elliptic curves, J. Reine Angew. Math., to appear, Preprint (2009) available at http://arxiv.org/abs/0906.1815.Google Scholar
[DD09c]Dokchitser, T. and Dokchitser, V., Self-duality of Selmer groups, Math. Proc. Cambridge Philos. Soc. 146 (2009), 257267.CrossRefGoogle Scholar
[DD10]Dokchitser, T. and Dokchitser, V., On the Birch–Swinnerton-Dyer quotients modulo squares, Ann. of Math. (2) 172 (2010), 567596.CrossRefGoogle Scholar
[Gon09]González-Avilés, C. D., Arithmetic duality theorems for 1-motives over function fields, J. Reine Angew. Math. 632 (2009), 203231.Google Scholar
[GT07]González-Avilés, C. D. and Tan, K.-S., A generalization of the Cassels–Tate dual exact sequence, Math. Res. Lett. 14 (2007), 295302.CrossRefGoogle Scholar
[GD70]Grothendieck, A. and Demazure (ed), M., Schémas en groupes. I: Propriétés générales des schémas en groupes, in Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Mathematics, vol. 151 (Springer, Berlin, 1970).Google Scholar
[HS09]Harari, D. and Szamuely, T., Corrigenda for: arithmetic duality theorems for 1-motives, J. Reine Angew. Math. 632 (2009), 233236.Google Scholar
[Hel09]Helfgott, H. A., On the behaviour of root numbers in families of elliptic curves, Preprint (2009), available at http://arxiv.org/abs/math.NT/0408141.Google Scholar
[KT03]Kato, K. and Trihan, F., On the conjectures of Birch and Swinnerton-Dyer in characteristic p>0, Invent. Math. 153 (2003), 537592.CrossRefGoogle Scholar
[KM85]Katz, N. M. and Mazur, B., Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108 (Princeton University Press, Princeton, NJ, 1985).CrossRefGoogle Scholar
[Kim07]Kim, B. D., The parity conjecture for elliptic curves at supersingular reduction primes, Compositio Math. 143 (2007), 4772.CrossRefGoogle Scholar
[MR07]Mazur, B. and Rubin, K., Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math. (2) 166 (2007), 579612.CrossRefGoogle Scholar
[Mil68]Milne, J. S., The Tate–Šafarevič group of a constant abelian variety, Invent. Math. 6 (1968), 91105.CrossRefGoogle Scholar
[Mil80]Milne, J. S., Étale cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
[Mil06]Milne, J. S., Arithmetic duality theorems, second edition (BookSurge, LLC, Charleston, SC, 2006).Google Scholar
[Nek01]Nekovář, J., On the parity of ranks of Selmer groups. II, C. R. Math. Acad. Sci. Paris Sér. I 332 (2001), 99104.CrossRefGoogle Scholar
[Nek09]Nekovář, J., On the parity of ranks of Selmer groups. IV, Compositio Math. 145 (2009), 13511359, with an appendix by Jean-Pierre Wintenberger.CrossRefGoogle Scholar
[Nek10]Nekovář, J., Some consequences of a formula of Mazur and Rubin for arithmetic local constants, Preprint (2010).Google Scholar
[Roh94]Rohrlich, D. E., Elliptic curves and the Weil–Deligne group, in Elliptic curves and related topics, CRM Proceedings Lecture Notes, vol. 4 (American Mathematical Society, Providence, RI, 1994), 125157.CrossRefGoogle Scholar
[Tat95]Tate, J., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, vol. 9 (Soc. Math. France, Paris, 1995), Exp. No. 306, 415–440.Google Scholar
[TO70]Tate, J. and Oort, F., Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 121.CrossRefGoogle Scholar
[Ulm91]Ulmer, D. L., p-descent in characteristic p, Duke Math. J. 62 (1991), 237265.CrossRefGoogle Scholar
[Ulm04]Ulmer, D., Elliptic curves and analogies between number fields and function fields, in Heegner points and Rankin L-series, Mathematical Sciences Research Institute Publications, vol. 49 (Cambridge University Press, Cambridge, 2004), 285315.CrossRefGoogle Scholar
[Ulm05]Ulmer, D. L., Geometric non-vanishing, Invent. Math. 159 (2005), 133186.CrossRefGoogle Scholar
You have Access
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Parity conjectures for elliptic curves over global fields of positive characteristic
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Parity conjectures for elliptic curves over global fields of positive characteristic
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Parity conjectures for elliptic curves over global fields of positive characteristic
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *