Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-zvgck Total loading time: 0.205 Render date: 2021-06-21T18:59:51.183Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

On the Iwasawa theory of the Lubin–Tate moduli space

Published online by Cambridge University Press:  26 February 2013

Jan Kohlhaase
Affiliation:
Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstraße 62, D-48149 Münster, Germany (email: kohlhaaj@math.uni-muenster.de)
Rights & Permissions[Opens in a new window]

Abstract

We study the affine formal algebra $R$ of the Lubin–Tate deformation space as a module over two different rings. One is the completed group ring of the automorphism group $\Gamma $ of the formal module of the deformation problem, the other one is the spherical Hecke algebra of a general linear group. In the most basic case of height two and ground field $\mathbb {Q}_p$, our structure results include a flatness assertion for $R$ over the spherical Hecke algebra and allow us to compute the continuous (co)homology of $\Gamma $ with coefficients in $R$.

Type
Research Article
Copyright
Copyright © 2013 The Author(s) 

References

[Beh12]Behrens, M., The homotopy groups of the $E(2)$-local sphere at $p \gt 3$, revisited, Adv. Math. 230 (2012), 458492.CrossRefGoogle Scholar
[Bor91]Borel, A., Linear algebraic groups, Graduate Texts in Mathematics, vol. 126, second edition (Springer, New York, 1991).CrossRefGoogle Scholar
[Bos08]Bosch, S., Lectures on formal and rigid geometry, Preprint (2008), available atwww.math.uni-muenster.de/sfb/about/publ/heft378.pdf.Google Scholar
[Bou06]Bourbaki, N., Algèbre commutative (Springer, Berlin, 2006).CrossRefGoogle Scholar
[Bru66]Brumer, A., Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442470.CrossRefGoogle Scholar
[Cha96]Chai, C.-L., The group action on the closed fiber of the Lubin–Tate moduli space, Duke Math. J. 82 (1996), 725754.CrossRefGoogle Scholar
[deJ95]de Jong, J., Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Inst. Hautes Études Sci. 82 (1995), 596.CrossRefGoogle Scholar
[DH95]Devinatz, E. S. and Hopkins, M. J., The action of the Morava stabilizer group on the Lubin–Tate moduli space of lifts, Amer. J. Math. 117 (1995), 669710.CrossRefGoogle Scholar
[Dri74]Drinfeld, V. G., Elliptic modules, Math. USSR Sbornik 23 (1974), 561592.CrossRefGoogle Scholar
[FGL08]Fargues, L., Genestier, A. and Lafforgue, V., L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld, Progress in Mathematics, vol. 262 (Birkhäuser, Boston, MA, 2008).Google Scholar
[Gro11]Große-Klönne, E., On the universal module of -adic spherical Hecke algebras, Preprint (2011), available at http://www.math.hu-berlin.de/∼zyska/Grosse-Kloenne/Preprints.html.Google Scholar
[GH94]Gross, B. H. and Hopkins, M. J., Equivariant vector bundles on the Lubin–Tate moduli space, Contemp. Math. 158 (1994), 2388.Google Scholar
[Gru79]Grünenfelder, L., On the homology of filtered and graded rings, J. Pure Appl. Algebra 14 (1979), 2137.CrossRefGoogle Scholar
[Haz78]Hazewinkel, M., Formal groups and applications, Pure and Applied Mathematics, vol. 78 (Academic Press, New York, 1978).Google Scholar
[Hov93]Hovey, M., Bousfield localization functors and Hopkins’ chromatic splitting conjecture, in The Čech centennial (Boston, MA, 1993), Contemporary Mathematics, vol. 181 (American Mathematical Society, Providence, RI, 1993), 225250.Google Scholar
[HvO96]Huishi, L. and van Oystaeyen, F., Zariskian filtrations, -Monographs in Mathematics, vol. 2 (Kluwer, 1996).CrossRefGoogle Scholar
[Kna88]Knapp, A., Lie groups, lie algebras, and cohomology, Mathematical Notes, vol. 34 (Princeton, 1988).Google Scholar
[Koh12]Kohlhaase, J., Iwasawa modules arising from deformation spaces of -divisible formal group laws, Preprint (2012), available at http://www.math.uni-muenster.de/u/kohlhaaj/publ.html.Google Scholar
[Koh11]Kohlhaase, J., The cohomology of locally analytic representations, J. Reine Angew. Math. (Crelle) 651 (2011), 187240.Google Scholar
[KS12]Kohlhaase, J. and Schraen, B., Homological vanishing theorems for locally analytic representations, Math. Ann. 353 (2012), 219258.CrossRefGoogle Scholar
[Laz65]Lazard, M., Groupes analytiques -adiques, Publ. Inst. Hautes Études Sci. 26 (1965), 5219.Google Scholar
[NSW00]Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, vol. 323 (Springer, New York, 2000).Google Scholar
[OS10]Orlik, S. and Strauch, M., On Jordan–Hölder series of some locally analytic representations, Preprint (2010); arXiv:1001.0323.Google Scholar
[PR94]Platonov, V. and Rapinchuk, A., Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139 (Academic Press, New York, 1994).Google Scholar
[RZ96]Rapoport, M. and Zink, Th., Period spaces for -divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
[Sch11]Schneider, P., -adic Lie groups, Grundlehren der Mathematischen Wissenschaften, vol. 344 (Springer, 2011).Google Scholar
[ST02a]Schneider, P. and Teitelbaum, J., Locally analytic distributions and $p$-adic representation theory, with applications to $\mathrm {GL}_2$, J. Amer. Math. Soc. 15 (2002), 443468.CrossRefGoogle Scholar
[ST02b]Schneider, P. and Teitelbaum, J., Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359380.CrossRefGoogle Scholar
[SY95]Shimomura, K. and Yabe, A., The homotopy groups $\pi _*(L_2S^0)$, Topology 34 (1995), 261289.CrossRefGoogle Scholar
[Str08]Strauch, M., Deformation spaces of one-dimensional formal groups and their cohomology, Adv. Math. 217 (2008), 889951.CrossRefGoogle Scholar
[Stu00]Stumbo, F., Minimal length coset representatives for quotients of parabolic subgroups in Coxeter groups, Boll. Unione Mat. Ital. 8 (2000), 699715.Google Scholar
[Sym04]Symonds, P., The Tate–Farrell Cohomology of the Morava stabilizer group $S_{p-1}$ with coefficients in $E_{p-1}$, Contemp. Math. 346 (2004), 485492.CrossRefGoogle Scholar
[SW00]Symonds, P. and Weigel, T., Cohomology of $p$-adic analytic groups, in New horizons in pro- groups, Progress in Mathematics, vol. 184, eds du Sautoy, M., Segal, D. and Shalev, A. (Birkhäuser, 2000), 349410.CrossRefGoogle Scholar
[Wil98]Wilson, J. S., Profinite groups, London Mathematical Society Monographs, vol. 19 (Oxford, 1998).Google ScholarPubMed
[Yu95]Yu, J.-K., On the moduli of quasi-canonical liftings, Compositio Math. 96 (1995), 293321.Google Scholar
You have Access
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the Iwasawa theory of the Lubin–Tate moduli space
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the Iwasawa theory of the Lubin–Tate moduli space
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the Iwasawa theory of the Lubin–Tate moduli space
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *