Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-14T21:04:48.288Z Has data issue: false hasContentIssue false

Hyperplane arrangements of Torelli type

Published online by Cambridge University Press:  14 December 2012

Daniele Faenzi
Affiliation:
Université de Pau et des Pays de l’Adour, Avenue de l’Université, BP 576, 64012 Pau cedex, France (email: daniele.faenzi@univ-pau.fr)
Daniel Matei
Affiliation:
Institute of Mathematics ‘Simion Stoilow’ of the Romanian Academy, I.M.A.R., Bucharest, Romania, P.O. Box 1-764, RO-014700, Bucharest, Romania (email: Daniel.Matei@imar.ro)
Jean Vallès
Affiliation:
Université de Pau et des Pays de l’Adour, Avenue de l’Université, BP 576, 64012 Pau cedex, France (email: jean.valles@univ-pau.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a necessary and sufficient condition in order for a hyperplane arrangement to be of Torelli type, namely that it is recovered as the set of unstable hyperplanes of its Dolgachev sheaf of logarithmic differentials. Decompositions and semistability of non-Torelli arrangements are investigated.

Type
Research Article
Copyright
© The Author(s) 2012

References

[AO01]Ancona, V. and Ottaviani, G., Unstable hyperplanes for Steiner bundles and multidimensional matrices, Adv. Geom. 1 (2001), 165192.CrossRefGoogle Scholar
[Arn69]Arnol’d, V. I., The cohomology ring of the colored braid group, Math. Notes 5 (1969), 138140.CrossRefGoogle Scholar
[BCS97]Bürgisser, P., Clausen, M. and Shokrollahi, M. A., Algebraic complexity theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315 (Springer, Berlin, 1997), with the collaboration of Thomas Lickteig.CrossRefGoogle Scholar
[Bri73]Brieskorn, E., Sur les groupes de tresses [d’après V. I. Arnol’d], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401 (Berlin), Lecture Notes in Mathematics, vol. 317 (Springer, Berlin, 1973), 2144.Google Scholar
[CHKS06]Catanese, F., Hoşten, S., Khetan, A. and Sturmfels, B., The maximum likelihood degree, Amer. J. Math. 128 (2006), 671697.CrossRefGoogle Scholar
[Del70]Deligne, P., Équations différentielles à points singuliers réguliers Lecture Notes in Mathematics, vol. 163 (Springer, Berlin, 1970).Google Scholar
[DK93]Dolgachev, I. and Kapranov, M. M., Arrangements of hyperplanes and vector bundles on Pn, Duke Math. J. 71 (1993), 633664.CrossRefGoogle Scholar
[Dol07]Dolgachev, I. V., Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ. 47 (2007), 3564.Google Scholar
[Eis95]Eisenbud, D., Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150 (Springer, New York, 1995).CrossRefGoogle Scholar
[GM96]Gelfand, S. I. and Manin, Y. I., Methods of homological algebra (Springer, Berlin, 1996), translated from the 1988 Russian original.CrossRefGoogle Scholar
[MS01]Mustaţǎ, M. and Schenck, H. K., The module of logarithmic p-forms of a locally free arrangement, J. Algebra 241 (2001), 699719.CrossRefGoogle Scholar
[OSS80]Okonek, C., Schneider, M. and Spindler, H., Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3 (Birkhäuser, Boston, MA, 1980).Google Scholar
[OT92]Orlik, P. and Terao, H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300 (Springer, Berlin, 1992).CrossRefGoogle Scholar
[Sai80]Saito, K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265291.Google Scholar
[Sch03]Schenck, H. K., Elementary modifications and line configurations in , Comment. Math. Helv. 78 (2003), 447462.CrossRefGoogle Scholar
[Val00]Vallès, J., Nombre maximal d’hyperplans instables pour un fibré de Steiner, Math. Z. 233 (2000), 507514.Google Scholar
[Val11]Vallès, J., Fibrés de Schwarzenberger et fibrés logarithmiques généralisés, Math. Z. 268 (2011), 10131023.CrossRefGoogle Scholar