Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T15:08:07.827Z Has data issue: false hasContentIssue false

Analytic representation theory of Lie groups: general theory and analytic globalizations of Harish-Chandra modules

Part of: Lie groups

Published online by Cambridge University Press:  01 June 2011

Heiko Gimperlein
Affiliation:
Leibniz Universität Hannover, Institut für Analysis, Welfengarten 1, D-30167, Hannover, Germany (email: gimperlein@math.ku.dk)
Bernhard Krötz
Affiliation:
Leibniz Universität Hannover, Institut für Analysis, Welfengarten 1, D-30167, Hannover, Germany (email: kroetz@math.uni-hannover.de)
Henrik Schlichtkrull
Affiliation:
Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark (email: schlicht@math.ku.dk)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article a general framework for studying analytic representations of a real Lie group G is introduced. Fundamental topological properties of the representations are analyzed. A notion of temperedness for analytic representations is introduced, which indicates the existence of an action of a certain natural algebra 𝒜(G) of analytic functions of rapid decay. For reductive groups every Harish-Chandra module V is shown to admit a unique tempered analytic globalization, which is generated by V and 𝒜(G) and which embeds as the space of analytic vectors in all Banach globalizations of V.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[BK]Bernstein, J. and Krötz, B., Smooth Fréchet globalizations of Harish-Chandra modules, submitted, http://service.ifam.uni-hannover.de/∼kroetz/bk21.pdf.Google Scholar
[BD01]Bonet, J. and Domanski, P., Parameter dependence of solutions of partial differential equations in spaces of real analytic functions, Proc. Amer. Math. Soc. 129 (2001), 495503.CrossRefGoogle Scholar
[Cas89]Casselman, W., Canonical extensions of Harish-Chandra modules to representations of G, Canad. J. Math. 41 (1989), 385438.CrossRefGoogle Scholar
[DS79]Dierolf, S. and Schwanengel, U., Examples of locally compact noncompact minimal topological groups, Pacific J. Math. 82 (1979), 349355.CrossRefGoogle Scholar
[Gar60]Gårding, L., Vectors analytiques dans le représentations des groupes de Lie, Bull. Soc. Math. France 88 (1960), 7393.CrossRefGoogle Scholar
[GKL]Gimperlein, H., Krötz, B. and Lienau, C., Analytic factorization of Lie group representations, submitted.Google Scholar
[Glo02]Glöckner, H., Infinite-dimensional Lie groups without completeness restrictions, in Geometry and analysis on Lie groups, Banach Center Publications, vol. 55 (2002), 43–59.Google Scholar
[Goo69]Goodman, R., Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc. 143 (1969), 5576.CrossRefGoogle Scholar
[Gro53a]Grothendieck, A., Sur certains espaces de fonctions holomorphes, I, J. Reine Angew. Math. 192 (1953), 3564.CrossRefGoogle Scholar
[Gro53b]Grothendieck, A., Sur certains espaces de fonctions holomorphes, II, J. Reine Angew. Math. 192 (1953), 7795.Google Scholar
[Gro73]Grothendieck, A., Topological vector spaces, Notes on Mathematics and its Applications (Gordon and Breach Science Publishers, New York–London–Paris, 1973) (Translated from the French by Orlando Chaljub).Google Scholar
[Har53]Harish-Chandra, , Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185243.Google Scholar
[Har66]Harish-Chandra, , Discrete series for semisimple Lie groups. II, Acta Math. 116 (1966), 1111.CrossRefGoogle Scholar
[Jar81]Jarchow, H., Locally convex spaces (Teubner, Stuttgart, 1981).CrossRefGoogle Scholar
[Kas08]Kashiwara, M., Equivariant derived category and representation of real semisimple Lie groups, in Representation theory and complex analysis, Lecture Notes in Mathematics, vol. 1931 (Springer, New York, 2008), 137234.Google Scholar
[KS94]Kashiwara, M. and Schmid, W., Quasi-equivariant 𝒟-modules, equivariant derived category, and representations of reductive Lie groups, in Lie theory and geometry, Progress in Mathematics, vol. 123 (Birkhäuser, Boston, MA, 1994), 457488.CrossRefGoogle Scholar
[Kuc04]Kucera, J., Reflexivity of inductive limits, Czechoslovak Math. J. 54 (2004), 103106.Google Scholar
[LW73]Lepowsky, J. and Wallach, N., Finite- and infinite-dimensional representations of linear semisimple groups, Trans. Amer. Math. Soc. 184 (1973), 223246.Google Scholar
[MV97]Meise, R. and Vogt, D., Introduction to functional analysis (Oxford University Press, Oxford, 1997).CrossRefGoogle Scholar
[Nel59]Nelson, E., Analytic vectors, Ann. of Math. (2) 70 (1959), 572615.CrossRefGoogle Scholar
[Net64]Neto, J. B., Spaces of vector valued real analytic functions, Trans. Amer. Math. Soc. 112 (1964), 381391.Google Scholar
[Sch85]Schmid, W., Boundary value problems for group invariant differential equations, in The mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque, Numero Hors Serie (1985), 311–321.Google Scholar
[Wal88]Wallach, N., Real reductive groups I (Academic Press, New York, 1988).Google Scholar
[War72]Warner, G., Harmonic analysis on semi-simple Lie groups (Springer, Berlin, 1972).Google Scholar
[Wen96]Wengenroth, J., Acyclic inductive spectra of Fréchet spaces, Studia Math. 120 (1996), 247258.CrossRefGoogle Scholar