Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-s4m2s Total loading time: 0.364 Render date: 2021-10-25T08:30:50.286Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Spins of prime ideals and the negative Pell equation $x^{2}-2py^{2}=-1$

Published online by Cambridge University Press:  23 November 2018

P. Koymans
Affiliation:
Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands email p.h.koymans@math.leidenuniv.nl
D. Z. Milovic
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK email djordjo.milovic@ucl.ac.uk

Abstract

Let $p\equiv 1\hspace{0.2em}{\rm mod}\hspace{0.2em}4$ be a prime number. We use a number field variant of Vinogradov’s method to prove density results about the following four arithmetic invariants: (i) $16$-rank of the class group $\text{Cl}(-4p)$ of the imaginary quadratic number field $\mathbb{Q}(\sqrt{-4p})$; (ii) $8$-rank of the ordinary class group $\text{Cl}(8p)$ of the real quadratic field $\mathbb{Q}(\sqrt{8p})$; (iii) the solvability of the negative Pell equation $x^{2}-2py^{2}=-1$ over the integers; (iv) $2$-part of the Tate–Šafarevič group $\unicode[STIX]{x0428}(E_{p})$ of the congruent number elliptic curve $E_{p}:y^{2}=x^{3}-p^{2}x$. Our results are conditional on a standard conjecture about short character sums.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The second author is supported by ERC grant agreement No. 670239.

References

Bruin, N. and Hemenway, B., On congruent primes and class numbers of imaginary quadratic fields , Acta Arith. 159 (2013), 6387.CrossRefGoogle Scholar
Burgess, D. A., On character sums and primitive roots , Proc. Lond. Math. Soc. (3) 12 (1962), 179192.CrossRefGoogle Scholar
Burgess, D. A., On character sums and L-series. II , Proc. Lond. Math. Soc. (3) 13 (1963), 524536.CrossRefGoogle Scholar
Cohn, H. and Lagarias, J. C., On the existence of fields governing the 2-invariants of the classgroup of Q(√dp) as p varies , Math. Comp. 41 (1983), 711730.Google Scholar
Cohn, H. and Lagarias, J. C., Is there a density for the set of primes p such that the class number of  Q(√-p) is divisible by 16? , in Topics in classical number theory, Vol. I, II, Colloq. Math. Soc. János Bolyai, vol. 34 (North-Holland, Amsterdam, 1984), 257280.Google Scholar
Fouvry, É. and Klüners, J., On the 4-rank of class groups of quadratic number fields , Invent. Math. 167 (2007), 455513.CrossRefGoogle Scholar
Fouvry, É. and Klüners, J., On the negative Pell equation , Ann. of Math. (2) 172 (2010), 20352104.CrossRefGoogle Scholar
Fouvry, É. and Klüners, J., On the Spiegelungssatz for the 4-rank , Algebra Number Theory 4 (2010), 493508.CrossRefGoogle Scholar
Fouvry, É. and Klüners, J., The parity of the period of the continued fraction of √d , Proc. Lond. Math. Soc. (3) 101 (2010), 337391.CrossRefGoogle Scholar
Fouvry, É. and Klüners, J., Weighted distribution of the 4-rank of class groups and applications , Int. Math. Res. Not. IMRN 11 (2011), 36183656.CrossRefGoogle Scholar
Friedlander, J. B., Iwaniec, H., Mazur, B. and Rubin, K., The spin of prime ideals , Invent. Math. 193 (2013), 697749.CrossRefGoogle Scholar
Friedlander, J. B., Iwaniec, H., Mazur, B. and Rubin, K., Erratum to: The spin of prime ideals , Invent. Math. 202 (2015), 923925.CrossRefGoogle Scholar
Friedlander, J. and Iwaniec, H., The polynomial X 2 + Y 4 captures its primes , Ann. of Math. (2) 148 (1998), 9451040.CrossRefGoogle Scholar
Heath-Brown, D. R., The size of Selmer groups for the congruent number problem , Invent. Math. 111 (1993), 171195.CrossRefGoogle Scholar
Heath-Brown, D. R., The size of Selmer groups for the congruent number problem. II , Invent. Math. 118 (1994), 331370; with an appendix by P. Monsky.CrossRefGoogle Scholar
Kaplan, P., Cycles d’ordre au moins 16 dans le 2-groupe des classes d’idéaux de certains corps quadratiques , Bull. Soc. Math. France Mém. 49–50 (1977), 113124; utilisation des calculateurs en mathématiques pures (Conf., Limoges, 1975).CrossRefGoogle Scholar
Kaplan, P. and Williams, K. S., On the class numbers of  ℚ(√±2p) modulo 16, for p ≡ 1 (mod 8) a prime , Acta Arith. 40 (1981/82), 289296.CrossRefGoogle Scholar
Kaplan, P. and Williams, K. S., On the strict class number of  ℚ(√2p) modulo 16, p ≡ 1 (mod 8) prime , Osaka J. Math. 21 (1984), 2329.Google Scholar
Kaplan, P., Williams, K. S. and Hardy, K., Divisibilité par 16 du nombre des classes au sens strict des corps quadratiques réels dont le deux-groupe des classes est cyclique , Osaka J. Math. 23 (1986), 479489.Google Scholar
Koymans, P. and Milovic, D., On the 16-rank of class groups of  ℚ(√-2p) for primes p ≡ 1 mod 4 , Int. Math. Res. Not. IMRN (2018), rny010.Google Scholar
Lang, S., Algebraic number theory, second edition (Springer, New York, 1986).CrossRefGoogle Scholar
Leonard, P. A. and Williams, K. S., On the divisibility of the class numbers of  ℚ(√-p) and ℚ(√-2p) by 16 , Canad. Math. Bull. 25 (1982), 200206.CrossRefGoogle Scholar
Milovic, D., The infinitude of  ℚ(√-p) with class number divisible by 16 , Acta Arith. 178 (2017), 201233.CrossRefGoogle Scholar
Milovic, D., On the 16-rank of class groups of  ℚ(√-8p) for p ≡-1 mod 4 , Geom. Funct. Anal. 27 (2017), 9731016.CrossRefGoogle Scholar
Milovic, D., On the 8-rank of narrow class groups of  ℚ(√-4pq), ℚ(√-8pq) and ℚ(√8pq) , Int. J. Number Theory 14 (2018), 21652193.CrossRefGoogle Scholar
Oriat, B., Sur la divisibilité par 8 et 16 des nombres de classes d’idéaux des corps quadratiques Q (√2p) et Q (√-2) , J. Math. Soc. Japan 30 (1978), 279285.CrossRefGoogle Scholar
Rédei, L., Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper , J. Reine Angew. Math. 171 (1934), 5560.Google Scholar
Reichardt, H., Zur Struktur der absoluten Idealklassengruppe im quadratischen Zahlkörper , J. Reine Angew. Math. 170 (1934), 7582.Google Scholar
Scholz, A., Über die Lösbarkeit der Gleichung t 2 - Du 2 = -4 , Math. Z. 39 (1935), 95111.CrossRefGoogle Scholar
Serre, J.-P., Lectures on N X (p), Chapman & Hall/CRC Research Notes in Mathematics, vol. 11 (CRC Press, Boca Raton, FL, 2012).Google Scholar
Smith, A., Governing fields and statistics for 4-Selmer groups and 8-class groups, Preprint (2016), arXiv:1607.07860.Google Scholar
Smith, A., $2^{\infty }$ -Selmer groups, $2^{\infty }$ -class groups, and Goldfeld’s conjecture, Preprint (2017), arXiv:1702.02325.Google Scholar
Stevenhagen, P., Ray class groups and governing fields , in Théorie des nombres, Année 1988/89, Fasc. 1, Publications Mathématiques de la Faculté des Sciences de Besançon (Université de Franche-Comté, Faculté des Sciences, Besançon, 1989).Google Scholar
Stevenhagen, P., Divisibility by 2-powers of certain quadratic class numbers , J. Number Theory 43 (1993), 119.CrossRefGoogle Scholar
Stevenhagen, P., The number of real quadratic fields having units of negative norm , Experiment. Math. 2 (1993), 121136.CrossRefGoogle Scholar
Vaughan, R.-C., Sommes trigonométriques sur les nombres premiers , C. R. Acad. Sci. Paris Sér. A-B 983 (1977), A981A983.Google Scholar
Vinogradov, I. M., The method of trigonometrical sums in the theory of numbers , Trav. Inst. Math. Stekloff 23 (1947).Google Scholar
Vinogradov, I. M., The method of trigonometrical sums in the theory of numbers (Dover Publications, Mineola, NY, 2004); translated from the Russian, revised and annotated by K. F. Roth and Anne Davenport, reprint of the 1954 translation.Google Scholar
Widmer, M., Counting primitive points of bounded height , Trans. Am. Math. Soc. 362 (2010), 47934829.CrossRefGoogle Scholar
Yamamoto, Y., Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic , Osaka J. Math. 21 (1984), 122.Google Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spins of prime ideals and the negative Pell equation $x^{2}-2py^{2}=-1$
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spins of prime ideals and the negative Pell equation $x^{2}-2py^{2}=-1$
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spins of prime ideals and the negative Pell equation $x^{2}-2py^{2}=-1$
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *