No CrossRef data available.
Article contents
Isometric actions on Lp-spaces: dependence on the value of p
Published online by Cambridge University Press: 26 May 2023
Abstract
Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty ]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0< p<\infty$) with unbounded orbits if and only if $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and $p>2$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence