Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T15:07:18.618Z Has data issue: false hasContentIssue false

Morphological Similarities between Single-Walled Nanotubes and Tubelike Structures of Polymers with Strong Adsorption Affinity to Nanowires

Published online by Cambridge University Press:  03 June 2015

Thomas Vogel*
Affiliation:
Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, GA, 30602, USA
Tali Mutat*
Affiliation:
Department of Physics, Technion, Israel Institute of Technology, Haifa, 32000, Israel
Joan Adler*
Affiliation:
Department of Physics, Technion, Israel Institute of Technology, Haifa, 32000, Israel
Michael Bachmann*
Affiliation:
Center for Simulational Physics, Department of Physics and Astronomy, The University of Georgia, Athens, GA, 30602, USA
Get access

Abstract

In their tubelike phase, nanowire-adsorbed polymers exhibit strong structural similarities to morphologies known from single-walled carbon (hexagonal) and boron (triangular) nanotubes. Since boron/boron nitride tubes require some disorder for stability the triangular polymer tubes provide a closer analog to the carbon tubes. By means of computer simulations of both two and three dimensional versions of a coarse-grained bead-spring model for the polymers, we investigate their structural properties and make a detailed comparison with structures of carbon nanotubes.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Vogel, T. and Bachmann, M., Phys. Rev. Lett. 104,198302 (2010).Google Scholar
[2]Milchev, A. and Binder, K., J. Chem. Phys. 117, 6852 (2002).CrossRefGoogle Scholar
[3]Gurevitch, I. and Srebnik, S., Chem. Phys. Lett. 444, 96 (2007); J. Chem. Phys. 128, 144901 (2008); S. Srebnik, J. Polym. Sci. B: Polym. Phys. 46, 2711 (2008).Google Scholar
[4]Tombros, N., Buit, L., Arfaoui, I., Tsoufis, T., Gournis, D., Trikalitis, P. N., van, S. J. der Molen, Rudolf, P., and Wees, B. J. van, Nano Lett. 8, 3060 (2008).Google Scholar
[5]Tran, M. Q., Cabral, J. T., Shaffer, M. S. P., and Bismarck, A., Nano Lett. 8, 2744 (2008).Google Scholar
[6]Iijima, S., Nature 56,354 (1991).Google Scholar
[7]Charlier, J.-C., Blase, X., and Roche, S., Rev. Mod. Phys. 79, 677 (2007).Google Scholar
[8]Wilder, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., and Dekker, C., Nature 391, 59 (1998); Odom, T. W., Huang, J.-L., Kim, P., and Lieber, C. M., ibid. 391, 62 (1998).Google Scholar
[9]Gao, M., Dai, L., and Wallace, G. G., Electroanalysis 15,1089 (2003); T. Hasan, Sun, Z., Wang, F., Bonaccorso, F., Tan, P. H., Rozhin, A. G., and Ferrari, A. C., Adv. Mater. 21,3874 (2009).Google Scholar
[10]Valentini, L., Biagiotti, J., Kenny, J. M., and Santucci, S., J. Appl. Polym. Sci. 87, 708 (2002); Valentini, L., Biagiotti, J., Lopez-Manchado, M. A., Santucci, S., and Kenny, J. M., Polym. Eng. Sci. 44, 303 (2004).Google Scholar
[11]Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Topics in Applied Physics, Vol. 80, edited by Dresselhaus, M. S., Dresselhaus, G., and Avouris, P. (Springer, Berlin, 2001).Google Scholar
[12]Huang, Y., Wu, J., and Hwang, K. C., Phys. Rev. B 74, 245413 (2006).Google Scholar
[13]Pine, P., Yaish, Y., and Adler, J., Phys. Rev. B 83,155410 (2011).Google Scholar
[14]Ciuparu, D., Klie, R. F., Zhu, Y., and Pfefferle, L., J. Phys. Chem. B 108,3967 (2004).Google Scholar
[15]Lee, R. K. F., Cox, B. J., and Hill, J. M., Nanoscale 2,859 (2010).Google Scholar
[16]Essam, J. W., Phase Transitions and Critical Phenomena, Vol. 2, edited by Domb, C. and Green, M. S. (Academic Press, New York, 1972).Google Scholar
[17]Bird, R. B., Curtiss, C. F., Armstrong, R. C., and Hassager, O., Dynamics of Polymeric Liquids, 2nd ed., 2 vols. (Wiley, New York, 1987).Google Scholar
[18]Milchev, A., Bhattacharaya, A., and Binder, K., Macromolecules 34,1881 (2001).Google Scholar
[19]Vogel, T. and Bachmann, M., Comp. Phys. Comm. 182,1928 (2011).Google Scholar
[20]Hansmann, U. H. E. and Wille, L. T., Phys. Rev. Lett. 88, 068105 (2002).Google Scholar
[21]Berg, B. A. and Neuhaus, T., Phys. Lett. B 267, 249 (1991); Phys. Rev. Lett. 68,9 (1992).Google Scholar
[22]Wang, F. and Landau, D. P., Phys. Rev. Lett. 86, 2050 (2001).Google Scholar
[23]Berashevich, J. and Chakraborty, T., Phys. Rev. B 83,195442 (2011).Google Scholar
[24]Lee, R. K. F., Cox, B. J., and Hill, J. M., J. Phys. Chem. C 113,19794 (2009).Google Scholar
[25]Lee, R. K. F., Cox, B. J., and Hill, J. M., J. Phys. A 42,065204 (2009).Google Scholar
[26]Kunstmann, J. and Quandt, A., Chem. Phys. Lett. 402, 21 (2005).Google Scholar
[27]Tian, F.-Y., Wang, Y.-X., Lo, V. C., and Sheng, J., Appl. Phys. Lett. 96,131901 (2010).Google Scholar
[28]Wang, J., Liu, Y., and Li, Y.-C., nauhemPhysChem 10,3119 (2009).Google Scholar
[29]Budyka, M. F., Zyubina, T. S., Ryabenko, A. G., Lin, S. H., and Mebel, A. M., Chem. Phys. Lett. 407, 266 (2005).Google Scholar
[30]Cox, B. J. and Hill, J. M., Carbon 45, 1453 (2007).Google Scholar
[31]Cox, B. J. and Hill, J. M., Carbon 46, 706 (2008).Google Scholar
[32] In analogy to the length lcc introduced for the C-C bond length in SWCNTs. For (cf. also Eq. (3.2)) for tubes with equal radii. The scaling between the lengths in triangular and honeycomb tubes for finite n will be discussed below.Google Scholar
[33]Bernholc, J., Brenner, D., M. Buongiorno Nardelli, Meunier, V., and Roland, C., Annu. Rev. Mater. Res. 32, 347 (2002).Google Scholar
[34]Kim, P. and Lieber, C. M., Science 286, 2148 (1999).Google Scholar
[35]Dresselhaus, M.S., Dresselhaus, G., and Jorio, A., Annu. Rev. Mater. Res. 34, 247 (2004).Google Scholar
[36]Vogel, T., Mutat, T., Adler, J., and Bachmann, M., Phys. Procedia 15,87 (2011).Google Scholar
[37] M. in het Panhuis, Maiti, A., Dalton, A. B., A. van den Noort, Coleman, J. N., McCarthy, B., and Blau, W. J., J. Phys. Chem. B 107,478 (2003).Google Scholar
[38]Ehli, C., Rahman, G. M. A., Jux, N., Balbinot, D., Guldi, D. M., Paolucci, F., Marcaccio, M., Paolucci, D., Melle-Franco, M., Zerbetto, F., Campidelli, S., and Prato, M., J. Am. Chem. Soc. 128, 11222 (2006).Google Scholar
[39]Ehli, C., Oelsner, C., Guldi, D. M., A. Mateo-Alonso, Prato, M., Schmidt, C., Backes, C., Hauke, F., and Hirsch, A., Nat. Chem. 1, 243 (2009).Google Scholar
[40]Caddeo, C., Melis, C., Colombo, L., and Mattoni, A., J. Phys. Chem. C 114, 21109 (2010).Google Scholar
[41]Tallury, S. S. and Pasquinelli, M. A., J. Phys. Chem. B 114,4122 (2010).Google Scholar
[42]Gao, M., Dai, L., and Wallace, G., Electroanalysis 15,1089 (2003).Google Scholar
[43]Bachmann, M., Arkin, H., and Janke, W., Phys. Rev. E 71,031906 (2005).Google Scholar
[44]Schnabel, S., Janke, W., and Bachmann, M., J. Comput. Phys. 230,4454 (2011).Google Scholar
[45]Vogel, T. and Bachmann, M., Phys. Procedia 4,161 (2010).Google Scholar
[46]Vogel, T., Neuhaus, T., Bachmann, M., and Janke, W., EPJ E 30, 7 (2009).Google Scholar