Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-pxp6n Total loading time: 0.312 Render date: 2021-06-20T12:35:20.212Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A Sub-Grid Structure Enhanced Discontinuous Galerkin Method for Multiscale Diffusion and Convection-Diffusion Problems

Published online by Cambridge University Press:  03 June 2015

Get access

Abstract

In this paper, we present an efficient computational methodology for diffusion and convection-diffusion problems in highly heterogeneous media as well as convection-dominated diffusion problem. It is well known that the numerical computation for these problems requires a significant amount of computer memory and time. Nevertheless, the solutions to these problems typically contain a coarse component, which is usually the quantity of interest and can be represented with a small number of degrees of freedom. There are many methods that aim at the computation of the coarse component without resolving the full details of the solution. Our proposed method falls into the framework of interior penalty discontinuous Galerkin method, which is proved to be an effective and accurate class of methods for numerical solutions of partial differential equations. A distinctive feature of our method is that the solution space contains two components, namely a coarse space that gives a polynomial approximation to the coarse component in the traditional way and a multiscale space which contains sub-grid structures of the solution and is essential to the computation of the coarse component. In addition, stability of the method is proved. The numerical results indicate that the method can accurately capture the coarse behavior of the solution for problems in highly heterogeneous media as well as boundary and internal layers for convection-dominated problems.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Arnold, D. N.An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19 (1982), pp. 742760.CrossRefGoogle Scholar
[2]Arnold, D. N., Brezzi, F., Cockburn, B. and Marini, L. D.Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39 (2002), pp. 17491779.CrossRefGoogle Scholar
[3]Brenner, S.Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal., 41 (2003), pp. 306324.CrossRefGoogle Scholar
[4]Castillo, P., Cockburn, B., Perugia, I. and Schoötzau, D.An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal., 38 (2000), pp. 16761706.CrossRefGoogle Scholar
[5]Chung, E. and Efendiev, Y.Reduced contrast approximations for high-contrast multiscale flow problems. SIAM MMS, 8 (2010), pp. 11261153.Google Scholar
[6]Chung, E., Efendiev, Y. and Gibson, R.An energy-conserving discontinuous multiscale finite element method for the wave equation in heterogeneous media. Advances in Adaptive Data Analysis, 3 (2011), pp. 251268.CrossRefGoogle Scholar
[7]Chung, E. and Engquist, B.Optimal discontinuous galerkin methods for wave propagation. SIAM J. Numer. Anal., 44 (2006), pp. 21312158.CrossRefGoogle Scholar
[8]Chung, E. and Engquist, B.Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal., 47 (2009), pp. 38203848.CrossRefGoogle Scholar
[9]Chung, E. and Lee, C.A staggered discontinuous Galerkin method for the curl-curl operator. To appear in IMA J. Numer. Anal.Google Scholar
[10]Chung, E. and Lee, C.A staggered discontinuous Galerkin method for the convection-diffusion equation. J. Numer. Math., 20 (2012), pp. 131.CrossRefGoogle Scholar
[11]Cockburn, B. and Shu, C.-W.The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35 (1998), pp. 24402463.CrossRefGoogle Scholar
[12]E, W. and Engquist, B.The heterogeneous multiscale methods. Commun. Math. Sci., 1 (2003), pp. 87132.CrossRefGoogle Scholar
[13]Efendiev, Y. and Hou, T. Y.Multiscale finite element methods, volume 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York, 2009.Google Scholar
[14]Efendiev, Y., Hou, T. and Wu, X.Convergence of a nonconformal multiscale finite element method. SIAM J. Numer. Anal., 37 (2000), pp. 888910.CrossRefGoogle Scholar
[15]Gibson, R., Gao, K., Chung, E. and Efendiev, Y.Multiscale modeling of acoustic wave propagation in two-dimensional media. Submitted.Google Scholar
[16]Hou, T. Y. and Liang, D.Multiscale analysis for convection dominated transport equations. DCDS-A, 23 (2009), pp. 281298.CrossRefGoogle Scholar
[17]Hou, T. and Wu, X.A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134 (1997), pp. 169189.CrossRefGoogle Scholar
[18]Jenny, P., Lee, S.H. and Tchelepi, H.A.Multi-scale finite-volume method for elliptic problems in subsurface flow simulation J. Comput. Phys., 187 (2003), pp. 4767.CrossRefGoogle Scholar
[19]Kalashnikova, I., Farhat, C. and Tezaur, R.A discontinuous enrichment method for the finite element solution of high Péclet advection-diffusion problems. Finite elements in Analysis and Design, 45 (2009), pp. 238250.CrossRefGoogle Scholar
[20]Jiang, L. and Mishev, I.A mixed multiscale finite volume method for elliptic problems in two-phase flow simulations. Comm. Comput. Phys., 11 (2012), pp. 1947.CrossRefGoogle Scholar
[21]Owhadi, H. and Zhang, L.Metric-based upscaling. Comm. Pure Appl. Math., 60 (2007), pp. 675723.CrossRefGoogle Scholar
[22]Park, P. and Hou, T. Y.Multiscale numerical methods for singularly-perturbed convection diffusion equations. International Journal of Computational Methods, 1 (2004), pp. 1765.CrossRefGoogle Scholar
[23]Riviere, B.Discontinuous Galerkin methods for solving elliptic and parabolic equations. SIAM, 2008.Google Scholar
[24]Wang, W., Guzman, J. and Shu, C.The multiscale discontinuous Galerkin method for solving a class of second order elliptic problems with rough coefficients. Int. J. Numer. Anal. Model., 8 (2011), pp. 2847.Google Scholar
25
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Sub-Grid Structure Enhanced Discontinuous Galerkin Method for Multiscale Diffusion and Convection-Diffusion Problems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Sub-Grid Structure Enhanced Discontinuous Galerkin Method for Multiscale Diffusion and Convection-Diffusion Problems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Sub-Grid Structure Enhanced Discontinuous Galerkin Method for Multiscale Diffusion and Convection-Diffusion Problems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *