Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-n9pbb Total loading time: 0.148 Render date: 2021-09-18T08:10:30.193Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Quadrilateral Cell-Based Anisotropic Adaptive Solution for the Euler Equations

Published online by Cambridge University Press:  20 August 2015

H. W. Zheng*
Affiliation:
Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
N. Qin*
Affiliation:
Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
F. C. G. A. Nicolleau*
Affiliation:
Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
C. Shu*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
*Corresponding
Get access

Abstract

An anisotropic solution adaptive method based on unstructured quadrilateral meshes for inviscid compressible flows is proposed. The data structure, the directional refinement and coarsening, including the method for initializing the refined new cells, for the anisotropic adaptive method are described. It provides efficient high resolution of flow features, which are aligned with the original quadrilateral mesh structures. Five different cases are provided to show that it could be used to resolve the anisotropic flow features and be applied to model the complex geometry as well as to keep a relative high order of accuracy on an efficient anisotropic mesh.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Berger, M.J. and Oliger, J.Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 1984; 53(3):484512.CrossRefGoogle Scholar
[2]Hornung, R. D., and Trangenstein, J. A.Adaptive mesh refinement and multilevel iteration for flow in porous media. J. Comput. Phys. 1997; 136(2):522545.CrossRefGoogle Scholar
[3]Popinet, S.Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 2003; 190(2):572600.CrossRefGoogle Scholar
[4]Liang, Q., Borthwick, A.G.L., and Stelling, G.. Simulation of Dam and Dyke-break Hydrodynamics on Dynamically Adaptive Quad-tree Grids. Int. J. for Num. Meth. in Fluids 2004; 46(2):127162.CrossRefGoogle Scholar
[5]Charlton, E.F., and Powell, K.G. An octree solution to conservation-laws over arbitrary regions (OSCAR). AIAA Paper 1997; 970198.Google Scholar
[6]Berger, M.J. and LeVeque, R.Adaptive mesh refinement for two-dimensional hyperbolic systems and the AMRCLAW software. SIAM J. Numer. Anal. 1998; 35:22982316.CrossRefGoogle Scholar
[7]Zeeuw, D. De and Powell, K. G.An Adaptively Refined Cartesian Mesh Solver for the Euler Equations. J. Comput. Phys. 1993; 104(1):5668.Google Scholar
[8]Schmidt, G. H. and Jacobs, F. J.Adaptive local grid refinement and multi-grid in numerical reservoir simulation. J. Comput. Phys. 1988; 77(1):140165.CrossRefGoogle Scholar
[9]Wang, Z.J.A Quadtree-based adaptive Cartesian/Quad grid flow solver for Navier-Stokes equations. Computers and fluids 1998; 27(44):529549.CrossRefGoogle Scholar
[10]Wang, Z.J. and Srinivasan, K.An Adaptive Cartesian Grid Generation Method for ‘Dirty’ Geometry. Int. J. for Num. Meth. in Fluids 2002; 39(8):703717.CrossRefGoogle Scholar
[11]Wang, Z.J., Chen, R.F., Hariharan, N., Przekwas, A.J. and Grove, D. A 2N Tree Based Automated Viscous Cartesian Grid Methodology for Feature Capturing. AIAA Paper 1999; 99-3300.Google Scholar
[12]Wang, Z.J. and Chen., R.F.Anisotropic Solution-Adaptive Viscous Cartesian Grid Method for Turbulent Flow Simulation. AIAA Journal 2002; 40(10):19691978.CrossRefGoogle Scholar
[13]Ham, F.E., Lien, F.S., and Strong, A.B.A Cartesian Grid Method with Transient Anisotropic Adaptation. J. Comput. Phys. 2002; 179(2):469494.CrossRefGoogle Scholar
[14]Keats, W.A. and Lien, F.S.Two-Dimensional Anisotropic Cartesian Mesh Adaptation for the Compressible Euler Equations. Int. J. for Num. Meth. in Fluids 2004; 46(11):10991125.CrossRefGoogle Scholar
[15]Habashi, WG., Dompierre, J., Bourgault, Y., Ait-Ali-Yahia, D., Fortin, M., Vallet, MG. Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part II: Structured meshes. Int. J. for Num. Meth. in Fluids 2002; 39(8):657673.Google Scholar
[16]Habashi, WG., Dompierre, J., Bourgault, Y., Ait-Ali-Yahia, D., Fortin, M., Vallet, MG.Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part III: Unstructured meshes. Int. J. for Num. Meth. in Fluids 2002; 39(8):675702.Google Scholar
[17]Sun, M., and Takayama, K.Conservative smoothing on an adaptive quadrilateral grid. J. Comput. Phys. 1999; 150(1):143180.CrossRefGoogle Scholar
[18]Zheng, H. W., Shu, C. and Chew, Y.T.An Object-Oriented and Quadrilateral-mesh based Solution Adaptive Algorithm for Compressible Multi-fluid Flows. J. Comput. Phys. 2008; 227(14):68956921.CrossRefGoogle Scholar
[19]Qin, N. and Liu, X.Flow feature aligned grid adaptation. Int. J. for Num. Meth. in Engineering 2006; 67(6):787814.CrossRefGoogle Scholar
[20]Toro, EF, Spruce, M., and Speares, W.Restoration of the contact surface in the HLL Riemann solver. Shock Waves 1994; 4(1):2534.CrossRefGoogle Scholar
[21]Toro, EF. Riemann Solvers and Numerical Methods for Fluid Dynamics (2nd edn) Springer: Berlin, 1999.CrossRefGoogle Scholar
[22]Luo, H., Baum, J.D., and Lohner, R.A hybrid Cartesian grid and gridless method for compressible flows. J. Comput. Phys. 2006; 214(2):618632.CrossRefGoogle Scholar
[23]Takayama, K. and Inoue, O.Shock wave diffraction over a 90 degree sharp corner, Posters presented at 18th ISSW. Shock Waves 1991; 1(4):301312.CrossRefGoogle Scholar
[24]Takayama, K. and Jiang, Z.Shock wave reflection over wedges: A benchmark test for CFD and experiments. Shock Waves 1997; 7(4):191203.CrossRefGoogle Scholar
[25]Tang, L., and Song, H.A multiresolution finite volume scheme for two-dimensional hyperbolic conservation laws. Journal of Computational and Applied Mathematics 2008; 214(2):583595.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quadrilateral Cell-Based Anisotropic Adaptive Solution for the Euler Equations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quadrilateral Cell-Based Anisotropic Adaptive Solution for the Euler Equations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quadrilateral Cell-Based Anisotropic Adaptive Solution for the Euler Equations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *