Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-lngfr Total loading time: 0.208 Render date: 2022-01-22T07:00:10.168Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Numerical Study of Quantized Vortex Interaction in the Ginzburg-Landau Equation on Bounded Domains

Published online by Cambridge University Press:  03 June 2015

Weizhu Bao*
Affiliation:
Department of Mathematics and Center for Computational Science and Engineering, National University of Singapore, Singapore 119076
Qinglin Tang*
Affiliation:
Department of Mathematics and Center for Computational Science and Engineering, National University of Singapore, Singapore 119076
*
Corresponding author.Email:bao@math.nus.edu.sg
Get access

Abstract

In this paper, we study numerically quantized vortex dynamics and their interaction in the two-dimensional (2D) Ginzburg-Landau equation (GLE) with a dimensionless parameter ε > 0 on bounded domains under either Dirichlet or homogeneous Neumann boundary condition. We begin with a review of the reduced dynamical laws for time evolution of quantized vortex centers in GLE and show how to solve these nonlinear ordinary differential equations numerically. Then we present efficient and accurate numerical methods for discretizing the GLE on either a rectangular or a disk domain under either Dirichlet or homogeneous Neumann boundary condition. Based on these efficient and accurate numerical methods for GLE and the reduced dynamical laws, we simulate quantized vortex interaction of GLE with different ε and under different initial setups including single vortex, vortex pair, vortex dipole and vortex lattice, compare them with those obtained from the corresponding reduced dynamical laws, and identify the cases where the reduced dynamical laws agree qualitatively and/or quantitatively as well as fail to agree with those from GLE on vortex interaction. Finally, we also obtain numerically different patterns of the steady states for quantized vortex lattices under the GLE dynamics on bounded domains.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anderson, B. P., Resource artical: Experiment with vortices in superfluid atomic gases, J. Low Temp. Phys., 161 (2010), 574602.CrossRefGoogle Scholar
[2]André, N. and Shafrir, I., Asymptotic behavior for the Ginzburg-Landau functional with weight (I), Arch. Rat. Mech. Anal., 142 (1998), 4573.Google Scholar
[3]Andreé, N. and Shafrir, I., Asymptotic behavior for the Ginzburg-Landau functional with weight (II), Arch. Rat. Mech. Anal., 142 (1998), 7598.Google Scholar
[4]Bao, W., Numerical methods for the nonlinear Schroödinger equation with nonzero far-field conditions, Methods Appl. Anal., 11 (2004), 367388.Google Scholar
[5]Bao, W., Du, Q. and Zhang, Y., Dynamics of rotating Bose-Einstein condensates and their efficient and accurate numerical computation, SIAM J. Appl. Math., 66 (2006), 758786.CrossRefGoogle Scholar
[6]Bauman, P., Chen, C. N., Phillips, D. and Sternberg, P., Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems, European J. Appl. Math., 6 (1995), 115126.CrossRefGoogle Scholar
[7]Bethuel, F., Brezis, H. and Heélein, F., Ginzburg-Landau Vortices, Brikhaäuser, Boston, 1994.Google Scholar
[8]Chapman, S., Du, Q. and Gunzburger, D., A model for varia ble thickness superconducting thin film, Z. Angew. Math. Phys., 47 (1996), 410431.CrossRefGoogle Scholar
[9] M. del Pino, Kowalczyk, M. and Musso, M., Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal., 239 (2006), 497541.Google Scholar
[10]Donnelly, R. J., Quantized Vortices in Helium II, Cambridge Univ., Cambridge, 1991.Google Scholar
[11]Du, Q. and Gunzburger, D., A model for superconduction thin films having variable thickness, Phys. D., 69 (1993), 215231.CrossRefGoogle Scholar
[12]Dynamics, W. Eof vortices in Ginzburg-Landau theroties with applications to superconductivity, Phys. D, 77 (1994), 38404.Google Scholar
[13]Glowinski, R. and Tallec, P., Augmented Lagrangian and Operator Splitting Method in Nonlinear Mechanics, SIAM, Philadelphia, PA, 1989.Google Scholar
[14]Gustafson, S. and Sigal, I. M., Effective dynamics of magnetic vortices, Adv. Math., 199 (2006), 448498.CrossRefGoogle Scholar
[15]Jerrard, R. and Soner, H., Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. Anal., 142 (1998), 99125.CrossRefGoogle Scholar
[16]Jian, H., The dynamical law of Ginzburg-Landau vortices with a pining effect, Appl. Math. Lett., 13 (2000), 9194.CrossRefGoogle Scholar
[17]Jian, H. and Song, B., Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors, J. Diff. Eq., 170 (2001), 123141.CrossRefGoogle Scholar
[18]Jian, H. and Wang, Y., Ginzburg-Landau vortices in inhomogeneous superconductors, J. Part. Diff. Eq., 15 (2002), 4560.Google Scholar
[19]Jimbo, S. and Morita, Y., Stability of nonconstant steady-state solutions to a Ginzburg-Landau equation in higer space dimension, Nonlinear Anal.: T.M.A., 22 (1994), 753770.CrossRefGoogle Scholar
[20]Jimbo, S. and Morita, Y., Vortex dynamics for the Ginzburg-Landau equation with Neumann condition, Methods App. Anal., 8 (2001), 451477.Google Scholar
[21]Jimbo, S. and Morita, Y., Notes on the limit equation of vortex equation of vortex motion for the Ginzburg-Landau equation with Neumann condition, Japan J. Indust. Appl. Math., 18 (1972), 151200.Google Scholar
[22]Kincaid, D. and Cheney, W., Numerical Analysis, Mathematics of Scientific Computing, Brooks-Cole, 3rd edition, 1999.Google Scholar
[23]Lin, F., Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math., 49 (1996), 323359.3.0.CO;2-E>CrossRefGoogle Scholar
[24]Lin, F., A remark on the previous paper “Some dynamical properties of Ginzburg-Landau vortices”, Comm. Pure Appl. Math., 49 (1996), 361364.3.0.CO;2-A>CrossRefGoogle Scholar
[25]Lin, F., Complex Ginzburg-Landau Equations and Dynamics of Vortices, Filaments, and Codimension-2 Submanifolds, Comm. Pure Appl. Math., 51 (1998), 385441.3.0.CO;2-5>CrossRefGoogle Scholar
[26]Lin, F., Mixed vortex-antivortex solutions of Ginzburg-Landu equations, Arch. Rat. Mech. Anal., 133 (1995), 103127.CrossRefGoogle Scholar
[27]Lin, F. and Du, Q., Ginzburg-Landau vortices: Dynamics, pining and hysteresis, SIAM J. Math. Anal., 28 (1997), 12651293.CrossRefGoogle Scholar
[28]Neu, J., Vortices in complex scalar fields, Phys. D, 43 (1990), 385406.CrossRefGoogle Scholar
[29]Peres, L. and Rubinstein, J., Vortex dynamics for U(1)-Ginzburg-Landau models, Phys. D, 64 (1993), 299309.CrossRefGoogle Scholar
[30]Rubinstein, J. and Sternberg, P., On the slow motion of vortices in the Ginaburg-Landau heat flow, SIAM J. Appl. Math., 26 (1995), 14521466.CrossRefGoogle Scholar
[31]Sandier, E. and Serfaty, S., Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 16271672.CrossRefGoogle Scholar
[32]Serfaty, S., Stability in 2D Ginzburg-Landau pass to the limit, Indiana U. Math. J., 54 (2005), 199221.CrossRefGoogle Scholar
[33]Serfaty, S., Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow. Part II: the dynamics, J. Euro. Math. Soc., 9 (2007), 383426.CrossRefGoogle Scholar
[34]Shen, J. and Tang, T., Spectral and High-Order Method with Applications, Science Press, 2006.Google Scholar
[35]Strang, G., On the construction and comparision of difference schemes, SIAM J. Numer. Anal., 5 (1968), 505517.CrossRefGoogle Scholar
[36]Weinstein, M. I. and Xin, J., Dynamic stability of vortex solutions of Ginzburg-Landau and nonlinear Schrödinger equations, Comm. Math. Phys., 180 (1996), 389428.CrossRefGoogle Scholar
[37]Zhang, Y., Bao, W. and Du, Q., Numerical simulation of vortex dynamics in Ginzburg-Landau-Schroädinger equation, Euro. J. Appl. Math., 18 (2007), 607630.CrossRefGoogle Scholar
[38]Zhang, Y., Bao, W. and Du, Q., The dynamics and interactions of quantized vortices in Ginzburg-Landau-Schroädinger equation, SIAM I. Appl. Math., 67 (2007), 17401775.CrossRefGoogle Scholar
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Numerical Study of Quantized Vortex Interaction in the Ginzburg-Landau Equation on Bounded Domains
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Numerical Study of Quantized Vortex Interaction in the Ginzburg-Landau Equation on Bounded Domains
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Numerical Study of Quantized Vortex Interaction in the Ginzburg-Landau Equation on Bounded Domains
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *