Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-ptlz9 Total loading time: 0.986 Render date: 2023-02-02T19:14:46.735Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

First-Principles Calculations of Shocked Fluid Helium in Partially Ionized Region

Published online by Cambridge University Press:  20 August 2015

Cong Wang*
Affiliation:
LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box8009, Beijing 100088, China
Xian-Tu He*
Affiliation:
LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box8009, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Ping Zhang*
Affiliation:
LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box8009, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China
*
Get access

Abstract

Quantum molecular dynamic simulations have been employed to study the equation of state (EOS) of fluid helium under shock compressions. The principal Hugoniot is determined from EOS, where corrections from atomic ionization are added onto the calculated data. Our simulation results indicate that principal Hugoniot shows good agreement with gas gun and laser driven experiments, and maximum compression ratio of 5.16 is reached at 106 GPa.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ernstorfer, R., Harb, M., Hebeisen, C. T., Sciaini, G., Dartigalongue, T., and Miller, R. J. D., The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold, Science, 323 (2009), 1033–1037.CrossRefGoogle ScholarPubMed
[2]Nellis, W. J., Dynamic compression of materials: metallization of fluid hydrogen at high pressures, Rep. Prog. Phys., 69 (2006), 1479.CrossRefGoogle Scholar
[3]Hicks, D. G., Boehly, T. R., Celliers, P. M., Eggert, J. H., Moon, S. J., Meyerhofer, D. D., and Collins, G. W., Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa, Phys. Rev. B, 79 (2009), 014112.CrossRefGoogle Scholar
[4]Philippe, F., Casner, A., Caillaud, T., Landoas, O., Monteil, M. C., Liberatore, S., Park, H. S., Amendt, P., Robey, H., Sorce, C., Li, C. K., Seguin, F., Rosenberg, M., Petrasso, R., Glebov, V., and Stoeckl, C., Experimental demonstration of X-ray drive enhancement with rugby-shaped hohlraums, Phys. Rev. Lett., 104 (2010), 035004.CrossRefGoogle ScholarPubMed
[5]Lorenzen, W., Holst, B., and Redmer, R., Demixing of hydrogen and helium at megabar pressures, Phys. Rev. Lett., 102 (2009), 115701.CrossRefGoogle ScholarPubMed
[6]Stevenson, D. J. and Salpeter, E. E., The phase diagram and transport properties for hydrogen-helium fluid planets, Astrophys. J. Suppl., 35 (1977), 221–237.CrossRefGoogle Scholar
[7]Stevenson, D. J. and Salpeter, E. E., The dynamics and helium distribution in hydrogen-helium fluid planets Astrophys. J. Suppl., 35 (1977), 239–261.CrossRefGoogle Scholar
[8]Saumon, D., Chabrier, G., and Van Horn, H. M., An equation of state for low-mass stars and giant planets, Astrophys. J. Suppl. Ser., 99 (1995), 713–41.CrossRefGoogle Scholar
[9]Ternovoi, V.Ya., Kvitov, S. V., Pyalling, A. A., Filimonov, A. S. and Fortov, V. E., Experimental determination of the conditions for the transition of Jupiters atmosphere to the conducting state, JETP Lett., 79 (2004), 6–9.CrossRefGoogle Scholar
[10]Vorberger, J., Tamblyn, I., Militzer, B., and Bonev, S. A., Hydrogen-helium mixtures in the interiors of giant planets, Phys. Rev. B., 75 (2007), 024206.CrossRefGoogle Scholar
[11]Perryman, M. A. C., Extra-solar planets, Rep. Prog. Phys., 63 (2000), 1209–1272.CrossRefGoogle Scholar
[12]Nellis, W. J., Holmes, N. C., Mitchell, A. C., Trainor, R. J., Governo, G. K., Ross, M., and Young, D. A., Shock Compression of liquid helium to 56 GPa (560 kbar), Phys. Rev. Lett., 53 (1984), 1248.CrossRefGoogle Scholar
[13]Eggert, J., Brygoo, S., Loubeyre, P., McWilliams, R. S., Celliers, P. M., Hicks, D. G., Boehly, T. R., Jeanloz, R., and Collins, G.W., Hugoniot data for helium in the ionization regime, Phys. Rev. Lett., 100 (2008), 124503.CrossRefGoogle ScholarPubMed
[14]Knudson, M. D. and Desjarlais, M. P., Shock compression of quartz to 1.6 TPa: Redefining a pressure standard, Phys. Rev. Lett., 103 (2009), 225501.CrossRefGoogle ScholarPubMed
[15]Ross, M. and Young, D. A., Helium at high density, Phys. Lett. A, 118 (1986), 463–466.CrossRefGoogle Scholar
[16]Chen, Q. F., Zhang, Y., Cai, L. C., Gu, Y.J., and Jing, F. Q., Self-consistent variational calculation of the dense fluid helium in the region of partial ionization, Phys. Plasma., 14 (2007), 012703.CrossRefGoogle Scholar
[17]Kowalski, P. M., Mazevet, S., Saumon, D., and Challacombe, M., Equation of state and optical properties of warm dense helium, Phys. Rev. B, 76 (2007), 075112.CrossRefGoogle Scholar
[18]Militzer, B., First principles calculations of shock compressed fluid helium, Phys. Rev. Lett., 97 (2006), 175501.CrossRefGoogle ScholarPubMed
[19]Ross, M., Rogers, F., Winter, N., and Collins, G., Activity expansion calculation of shock-compressed helium: The liquid Hugoniot, Phys. Rev. B, 76 (2007), 020502(R).CrossRefGoogle Scholar
[20]Wang, C. and Zhang, P., Ab initio study of shock compressed oxygen, J. Chem. Phys., 132 (2010), 154307.CrossRefGoogle ScholarPubMed
[21]Wang, C. and Zhang, P., The equation of state and nonmetal-metal transition of benzene under shock compression, J. Appl. Phys., 107 (2010), 083502.Google Scholar
[22]Kresse, G. and Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47 (1993), R558.CrossRefGoogle ScholarPubMed
[23]Kresse, G. and Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (1996), 11169.CrossRefGoogle ScholarPubMed
[24]Lenosky, T.Bickham, S., Kress, J., and Collins, L., Density-functional calculation of the Hugoniot of shocked liquid deuterium, Phys. Rev. B, 61 (2000), 1.CrossRefGoogle Scholar
[25]Perdew, J. P., Electronic Structure of Solids, Akademie Verlag, Berlin (1991).Google Scholar
[26]Blöchl, P. E., Projector augmented-wave method, Phys. Rev. B, 50 (1994), 17953.CrossRefGoogle ScholarPubMed
[27]Noseé, S., A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984), 511.Google Scholar
[28] The time steps have been taken as where a = (3/4πni)1/3 is the ionic sphere radius (и, is the ionic number density), kßT presents the kinetic energy, and тце is the ionic mass.Google Scholar
[29]Holst, B., Redmer, R., and Desjarlais, M. P., Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations, Phys. Rev. B, 77 (2008), 184201.CrossRefGoogle Scholar
[30]Mazevet, S., Desjarlais, M. P., Collins, L. A., Kress, J. D., and Magee, N. H., Simulations of the optical properties of warm dense aluminum, Phys. Rev. E, 71 (2005), 016409.CrossRefGoogle ScholarPubMed
[31]Wang, C., He, X. T., and Zhang, P., Hugoniot of shocked liquid deuterium up to 300 GPa: Quantum molecular dynamic simulations, J. Appl. Phys., 108 (2010), 044909.Google Scholar
[32]Aziz, R. A., Janzen, A. R., and Moldover, M. R., Ab initio calculations for helium: A standard for transport property measurements, Phys. Rev. Lett., 74 (1995), 1586.CrossRefGoogle ScholarPubMed
[33]Chen, Q. F., private communication, (2010).Google Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

First-Principles Calculations of Shocked Fluid Helium in Partially Ionized Region
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

First-Principles Calculations of Shocked Fluid Helium in Partially Ionized Region
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

First-Principles Calculations of Shocked Fluid Helium in Partially Ionized Region
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *