Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-jcwnq Total loading time: 0.177 Render date: 2021-10-22T17:19:41.267Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Direct Numerical Simulation of Multiple Particles Sedimentation at an Intermediate Reynolds Number

Published online by Cambridge University Press:  03 June 2015

Deming Nie*
Affiliation:
Institute of Fluid Mechanics, China Jiliang University, Hangzhou, 310018, China
Jianzhong Lin*
Affiliation:
Institute of Fluid Mechanics, China Jiliang University, Hangzhou, 310018, China State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Mengjiao Zheng*
Affiliation:
Institute of Fluid Mechanics, China Jiliang University, Hangzhou, 310018, China
Get access

Abstract

In this work the previously developed Lattice Boltzmann-Direct Forcing/ Fictitious Domain (LB-DF/FD) method is adopted to simulate the sedimentation of eight circular particles under gravity at an intermediate Reynolds number of about 248. The particle clustering and the resulting Drafting-Kissing-Tumbling (DKT) motion which takes place for the first time are explored. The effects of initial particle-particle gap on the DKT motion are found significant. In addition, the trajectories of particles are presented under different initial particle-particle gaps, which display totally three kinds of falling patterns provided that no DKT motion takes place, i.e. the concave-down shape, the shape of letter “M” and “in-line” shape. Furthermore, the lateral and vertical hydrodynamic forces on the particles are investigated. It has been found that the value of Strouhal number for all particles is the same which is about 0.157 when initial particle-particle gap is relatively large. The wall effects on falling patterns and particle expansions are examined in the final.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aidun, C. K., Lu, Y., Ding, E., 1998. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.CrossRefGoogle Scholar
[2]Alexander, M. L., Olga, M. L., Avinoam, N., 2003. The weakly inertial settling of particles in a viscous fluid. Proc. R. Soc. Lond. A 459,30793098.Google Scholar
[3]Brady, J. F., Bossis, G., 1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20,111157.CrossRefGoogle Scholar
[4]Braza, M., Chassaing, P., Minh, H. H., 1986. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 163,79130.CrossRefGoogle Scholar
[5]Crowley, J. M., 1971. Viscosity induced instability of a one-dimensional lattice of falling spheres. J. Fluid Mech. 45,151159.CrossRefGoogle Scholar
[6]Ding, H., Shu, C., Yeo, K. S., Xu, D., 2007. Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods. Int. J. Numer. Methods Fluids 53, 305332.CrossRefGoogle Scholar
[7]Feng, J., Joseph, D. D., 1995. The unsteady motion of solid bodies in creeping flows. J. Fluid Mech. 303,83102.CrossRefGoogle Scholar
[8]Feng, Z. G., Michaelides, E. E., 2004. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys. 195, 602628.CrossRefGoogle Scholar
[9]Guo, Z. L., Zheng, C. G., Shi, B. C., 2002. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308.CrossRefGoogle ScholarPubMed
[10]Hocking, L. M., 1964. The behaviour of clusters of spheres falling in a viscous fluid. J. Fluid Mech. 20, 365400.CrossRefGoogle Scholar
[11]Jenny, M., Dušek, J., Bouchet, G., 2004. Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.CrossRefGoogle Scholar
[12]Koch, D. L., Subramanian, G., 2011. Collective hydrodynamics of swimming microorganisms: Living fluids. Annu. Rev. Fluid Mech. 43, 637659.CrossRefGoogle Scholar
[13]Ladd, A. J. C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part I. Theoretical foundation. J. Fluid Mech. 271, 285310.CrossRefGoogle Scholar
[14]Leichtberg, S., Weinbaum, S., Pfeffer, R., Gluckman, M. J., 1976. A study of unsteady forces at low Reynolds number: A strong interaction theory for the coaxial settling of three or more spheres. Phil. Trans. R. Soc. Lond. A 282, 585610.CrossRefGoogle Scholar
[15]Luo, L.-S., Liao, W., Chen, X.W., Peng, Y., Zhang, W., 2011. Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E 83, 056710.CrossRefGoogle ScholarPubMed
[16]Mark, N. L., Hermann, F. F., 2005. A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. Comput. Phys. 204,157192.Google Scholar
[17]Metzger, B., Nicolas, M., Guazzelli, É., 2007. Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283301.CrossRefGoogle Scholar
[18]Mo, G., Sangani, A. S., 1994. A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous materials. Phys. Fluids 6, 16371652.CrossRefGoogle Scholar
[19]Nguyen, N-Q, Ladd, A.J.C., 2005. Sedimentation of hard-sphere suspensions at low Reynolds number. J. Fluid Mech. 525, 73104.CrossRefGoogle Scholar
[20]Nie, D. M., Lin, J. Z., 2010. A LB-DF/FD method for particle suspensions. Commun. Comput. Phys. 7,544563.Google Scholar
[21]Nie, D. M., Lin, J. Z., 2011a. A lattice Boltzmann-direct forcing/fictitious domain model for brownian particles in fluctuating fluids. Commun. Comput. Phys. 9, 959973CrossRefGoogle Scholar
[22]Nie, D., Lin, J., 2011b. Dynamics of two elliptical particles sedimentation in a vertical channel: Chaotic state. Int. J. Comput. Fluid Dyn. 25,401406.CrossRefGoogle Scholar
[23]Nie, D., Lin, J., Qiu, L., 2013. Direct numerical simulations of the decaying turbulence in rotating flows via the MRT-lattice Boltzmann method. Int. J. Comput. Fluid Dyn. DOI:10.1080/10618562.2013.779679.CrossRefGoogle Scholar
[24]Nie, D. M., Wang, Y., Zhang, K., 2011. Long-time decay of the translational/rotational velocity autocorrelation function for colloidal particles in two dimensions. Comput. Math. Appl. 61, 21522157.CrossRefGoogle Scholar
[25]Nie, D., Lin, J., Zhang, K., 2012. Flow patterns in the sedimentation of a capsule-shaped particle. Chin. Phys. Lett. 29, 084703.CrossRefGoogle Scholar
[26]Qian, Y. H., D’Humieres, D., Lallemand, P., 1992. Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17,479484.CrossRefGoogle Scholar
[27]Tian, F. B., Luo, H., Zhu, L., Liao, J. C., Lu, X. Y., 2011. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230, 72667283.CrossRefGoogle ScholarPubMed
[28]Uhlmann, M., 2005. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448476.CrossRefGoogle Scholar
[29]Wan, D., Turek, S., 2007. An efficient multigrid-FEM method for the simulation of solidliquid two phase flows. J. Comput. Appl. Math. 203,561580.CrossRefGoogle Scholar
[30]Xu, S., 2008. The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow. J. Comput. Phys. 227,50455071.CrossRefGoogle Scholar
[31]Xu, S., Wang, Z. J., 2006. An immersed interface method for simulating the interaction of a fluid with moving boundaries. J. Comput. Phys. 216,454493.CrossRefGoogle Scholar
[32]Yacoubi, A. E., Xu, S., Wang, Z. J., 2012. Computational study of the interaction of freely moving particles at intermediate Reynolds numbers. J. Fluid Mech. 705,134148.CrossRefGoogle Scholar
[33]Yu, Z. S., Shao, X. M., 2007. A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227, 292314.CrossRefGoogle Scholar
11
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Direct Numerical Simulation of Multiple Particles Sedimentation at an Intermediate Reynolds Number
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Direct Numerical Simulation of Multiple Particles Sedimentation at an Intermediate Reynolds Number
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Direct Numerical Simulation of Multiple Particles Sedimentation at an Intermediate Reynolds Number
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *