Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-ftpnm Total loading time: 0.203 Render date: 2021-09-21T00:38:04.347Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

An Unpreconditioned Boundary-Integral for Iterative Solution of Scattering Problems with Non-Constant Leontovitch Impedance Boundary Conditions

Published online by Cambridge University Press:  03 June 2015

D. Levadoux*
Affiliation:
ONERA, French Aerospace Lab, Chemin de la humière 91761 Palaiseau, France
F. Millot*
Affiliation:
CERFACS 42 avenue G. Coriolis31057 Toulouse, France
S. Pernet*
Affiliation:
ONERA, French Aerospace Lab, 2 Avenue Édouard Belin, 31000 Toulouse, France
*Corresponding
Get access

Abstract

This paper concerns the electromagnetic scattering by arbitrary shaped three dimensional imperfectly conducting objects modeled with non-constant Leontovitch impedance boundary condition. It has two objectives. Firstly, the intrinsically well-conditioned integral equation (noted GCSIE) proposed in [30] is described focusing on its discretization. Secondly, we highlight the potential of this method by comparison with two other methods, the first being a two currents formulation in which the impedance condition is implicitly imposed and whose the convergence is quasi-optimal for Lipschitz polyhedron, the second being a CFIE-like formulation [14]. In particular, we prove that the new approach is less costly in term of CPU time and gives a more accurate solution than that obtained from the CFIE formulation. Finally, as expected, It is demonstrated that no preconditioner is needed for this formulation.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gay, J., Bendali, A. and Fares, M’B., A boundary-element solution of the leontovitch problem, IEEE Trans. Antennas Propagation, Octobre 1999.Google Scholar
[2]Alouges, F., Borel, S. and Levadoux, D., A stable well conditioned integral equation for elec-tromagnetism scattering, JCAM, 204(2) (2007).Google Scholar
[3]Andriulli, F. P., Well-Posed Boundary Element Formulations in Electromagnetics, PhD, University of Michigan, 2008.Google Scholar
[4]Bagci, K., Olyslager, H., Buffa, F., Christiansen, A., Michielssen, S., Andriulli, E. and Cools, F. P., A multiplicative calderon preconditioner for the electric field integral equation, IEEE Trans. Antennas Propag., 56(8) (2008).Google Scholar
[5]Bendali, A., Boundary element solution of scattering problems relative to a generalized impedance boundary condition, in Jäger, W., Nevcas, J., John, O., Najzar, K. and Stará, J., editors, Partial Differential Equations, Theory and Numerical Solution, volume 406, pages 10–24. Chapman & Hall/CRC, 1999.Google Scholar
[6]Bruno, O. P., Computational electromagnetics and acoustics: high-order solvers, highfre-quency configurations, high-order surface representations, Oberwolfach Reports, 5 (2007).Google Scholar
[7]Bruno, Oscar, Elling, Tim, Randy Paffenroth and Catalin Turc, Electromagnetic integral equations requiring small numbers of krylov-subspace iterations, J. Comput. Phys., 228(17) (2009).CrossRefGoogle Scholar
[8]Buffa, A. and Hipmair, R., Galerkin boundary element methods for electromagnetic scattering, dans topics in computational wave propagation and inverse problems, Ainsworth, M.et al., eds., Springer-Verlag, Vol. 31, 2003.Google Scholar
[9]Buffa, Annalisa and Christiansen, Snorre H., A dual finite element complex on the barycentric refinement, Math. Comput., 76 (2007).CrossRefGoogle Scholar
[10]Carpentieri, B., Sparse Preconditioners for Dense Complex Linear Systems in Electromagnetic Applications, Ph.D. dissertation, INPT, April 2002, TH/PA/02/48.Google Scholar
[11]Carpentieri, B., Duff, I. S. and Giraud, L., Sparse pattern selection strategies for robust frobenius-norm minimization preconditioners in electromagnetism, Numer. Linear Algebra Appl., 7(7-8) (2000), 667685.3.0.CO;2-X>CrossRefGoogle Scholar
[12]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Series Studies in Mathematics and its Applications, North-Holland, Amsterdam, 1978.Google Scholar
[13]Collino, F. and Despres, B., Integral equations via saddle point problems for time-harmonic maxwell’s, J. Comput. Appl. Math., 150 (2003), 157192.CrossRefGoogle Scholar
[14]Collino, F., Millot, F. and Pernet, S., Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition, Progress In Electromagnetics Research, PIER 80, 2008.Google Scholar
[15]Colton, D. and Kreiss, P., Integral Equation Methods in Scattering, Wiley & Sons, New York, 1983.Google Scholar
[16]Millot, F., Levadoux, D. and Pernet, S., New trends in the preconditioning of integral equations of electromagnetism, in Mathematics in Industry-Scientific Computing in Electical Engineering, Springer, 2010.Google Scholar
[17]Darbas, M., Péconditionneurs Analytiques de Type Calderon pour les Formulations Intégrales des Problemes de Diffraction D’ondes, PhD Thesis INSA Toulouse, 2004.Google Scholar
[18]Darbas, M., Generalized cfie for the iterative solution of 3-d maxwell equations, Appl. Math. Lett., 19(8) (2006).CrossRefGoogle Scholar
[19]Colton, D., Cakoni, F. and Monk, P., The electromagnetic inverse-scattering problem for partially coated lipschitz domains, Proc. Royal. Soc. Edinburgh, 134A (2004), 661682.Google Scholar
[20]Frayssé, V., Giraud, L. and Gratton, S., A set of GMRES routines for real and complex arithmetics, Technical report, Cerfacs TR/PA/97/49, Toulouse, France, 1997.Google Scholar
[21]Lange, V., Equations Intégrales Espace-Temps pour les équations de Maxwell, Calcul du Champ Diffracté par un Obstacle Dissipatif, PhD Thesis Université de Bordeaux I, 1995.Google Scholar
[22]Leontovich, M. A., Approximate boundary condition for electromagnetic field on the surface of good conductor, Investigations on Radiowave Propagation part II Moscow, Academy of Sciences, Octobre 1978.Google Scholar
[23]Levadoux, D., Etude d’une équation Intégrale Adaptée a la Résolution Haute Fréquence de L’équation de Helmholtz, PhD Thesis Paris VI, 2001.Google Scholar
[24]Levadoux, D. and Michielsen, B. L., Analysis of a boundary integral equation for high frequency helmholtz problems, in Proceedings of 4th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Golden, Colorado, pages 765767, 1998.Google Scholar
[25]Levadoux, D. and Michielsen, B. L., Nouvelles formuations intégrales pour les problemes de diffraction d’ondes, Math. Model. Num. Anal., 38(1) (2004).CrossRefGoogle Scholar
[26]Medgyesi-Mitschang, L. N. and Putnam, J. M., Integral equation formulations for imperfectly conducting scatterers, IEEE Trans. Antennas Propag., 33(2) (1985).CrossRefGoogle Scholar
[27]Milinazzo, F. A., Zala, C. A., and Brooke, G. H., Rational square-root approximations for parabolic equation algorithms, J. Acoust. Soc. Am., 101(2) (1997).Google Scholar
[28]Monk, P., Finite Element Methods for Maxwell’s Equations, Clarendon Press, Oxford, 2003.CrossRefGoogle Scholar
[29]Kiminki, S. P., Yla-Oijala, P. and Jarvenpaa, S., Solving ibc-cfie with dual basis functions, IEEE Trans. Antennas Propag., 58(12) (2010).Google Scholar
[30]Pernet, S., A well-conditioned integral equation for iterative solution of scattering problems with a variable leontovitch boundary condition, Math. Model. Numer. Anal., 44(4), July 2010.CrossRefGoogle Scholar
[31]Levadoux, D., Borel, S. and Alouges, F., A new well-conditioned integral formulation for maxwell equations in three-dimensions, IEEE Trans. Antennas Propag., 53(9) (2005).Google Scholar
[32]Kelley, C. T., Campbell, S. L., Ipsen, I. C. F. and Meyer, C. D., Gmres and the minimal polynomial, BIT Numerical Mathematics, Springer Netherlands, 36 (4), December 1996.Google Scholar
[33]Kelley, C. T., Meyer, C. D., Campbell, S. L., Ipsen, I. C. F. and Xue, Z. Q., Convergence estimates for solution of integral equations with gmres, Tech. Report CRSC-TR95-13, North Carolina State University, Center for Research in Scientific Computation, March 1995.Google Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An Unpreconditioned Boundary-Integral for Iterative Solution of Scattering Problems with Non-Constant Leontovitch Impedance Boundary Conditions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An Unpreconditioned Boundary-Integral for Iterative Solution of Scattering Problems with Non-Constant Leontovitch Impedance Boundary Conditions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An Unpreconditioned Boundary-Integral for Iterative Solution of Scattering Problems with Non-Constant Leontovitch Impedance Boundary Conditions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *