Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T18:43:36.634Z Has data issue: false hasContentIssue false

Additive Schwarz Preconditioners with Minimal Overlap for Triangular Spectral Elements

Published online by Cambridge University Press:  03 June 2015

Yuen-Yick Kwan*
Center for Computational Science, Tulane University, New Orleans, LA 70118, USA
Get access


The additive Schwarz preconditioner with minimal overlap is extended to triangular spectral elements (TSEM). The method is a generalization of the corresponding method in tensorial quadrilateral spectral elements (QSEM). The proposed preconditioners are based on partitioning the domain into overlapping subdomains, solving local problems on these subdomains and solving an additional coarse problem associated with the subdomain mesh. The results of numerical experiments show that the proposed preconditioner are robust with respect to the number of elements and are more efficient than the preconditioners with generous overlaps.

Research Article
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1]Blyth, M. G. and Pozrikids, C., A Lobatto interpolation grid over the triangle, IMA J. Appl. Math., 71(1) (2006), 153169.CrossRefGoogle Scholar
[2]Bos, L., Bounding the Lebesgue function for Lagrange interpolation in a simplex, J. Approx. Theory, 38 (1983), 4359.Google Scholar
[3]Bos, L., Taylor, M. A. and Wingate, B. A., Tensor product Gauss-Lobatto points are Fekete points for the cube, Math. Comput., 70 (2001), 15431547.Google Scholar
[4]Brenner, S. C., The condition number of the Schur complement in domain decomposition, Numer. Math., 83(2) (1999), 187203.Google Scholar
[5]Brenner, S. C. and Sung, L.-Y., BDDC and FETI-DP without matrices or vectors, Comput. Methods Appl. Mech. Eng., 196(8) (2007), 14291435.Google Scholar
[6]Cai, X.-C. and Sarkis, M., A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21(2) (1999), 792797.Google Scholar
[7]Casarin, M. A., Quasi-optimal Schwarz methods for the conforming spectral element discretization, SIAM J. Numer. Anal., 34(6) (1997), 24822502.Google Scholar
[8]Dohrmann, C. R., A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci. Comput., 25(1) (2003), 246258.Google Scholar
[9]Dryja, M. and Widlund, O. B., An additive variant of the Schwarz alternating method in the case of many subregions, Technical Report 339, Department of Computer Science, Courant Institute, 1987.Google Scholar
[10]Dryja, M. and Widlund, O. B., Towards a unified theory of domain decomposition algorithms for elliptic problems, in Chan, T. F., Glowinski, R., Periaux, J. and Widlund, O. B., editors, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 321, Society for Industrial and Applied Mathematics, 1989.Google Scholar
[11]Dubiner, M., Spectral methods on triangles and other domains, J. Sci. Comput., 6(4) (1991), 345390.CrossRefGoogle Scholar
[12]Farhat, C., Lesoinne, M., Le Tallec, P., Pierson, K. and Rixen, D., FETI-DP: a dual-primal unified FETI method-part I: a faster alternative to the two-level FETI method, Int. J. Numer. Meth. Eng., 50(7), 15231544.Google Scholar
[13]Farhat, C. and Roux, F.-X., A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Meth. Eng., 32(6), 12051227.Google Scholar
[14]Gander, M. J., Optimized Schwarz methods, SIAM J. Numer. Anal., 44(2) (2006), 699731.CrossRefGoogle Scholar
[15]Kirby, K. C., Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM Trans. Math. Software, 30(4) (2004), 502516.Google Scholar
[16]Klawonn, A., Pavarino, L. F. and Rheinbach, O., Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains, Comput. Methods Appl. Mech. Eng., 198 (2008), 511523.CrossRefGoogle Scholar
[17]Li, J. and Widlund, O. B., FETI-DP, BDDC and block Cholesky methods, Int. J. Numer. Meth. Eng., 66 (2006), 250271.Google Scholar
[18]Lions, P. L., On the Schwarz method I, in Glowinski, R., Golub, G. H., Meurant, G. A. and Periaux, J., editors, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 142, Society for Industrial and Applied Mathematics, 1988.Google Scholar
[19]Lottes, J. W. and Fischer, P. F., Hybrid multigrid/Schwarz algorithms for the spectral element method, J. Sci. Comput., 24(1) (2005), 4578.Google Scholar
[20]Mandel, J., Balancing domain decomposition, Commun. Numer. Methods Eng., 9(3) (1993), 233241.CrossRefGoogle Scholar
[21]Mandel, J., Dohrmann, C. R. and Tezaur, R., An algebraic theory for primal and dual substructuring methods by constraints, Appl. Numer. Math., 54(2) (2005), 167193.Google Scholar
[22]Nataf, F., Rogier, F. and de Sturler, E., Optimal interface conditions for domain decomposition methods, Technical Report 301, CMAP, Ecole Polytechnique, 1994.Google Scholar
[23]Pavarino, L. F., Zampieri, E., Pasquetti, R. and Rapetti, F., Overlapping Schwarz methods for Fekete and Gauss-Lobatto spectral elements, SIAM J. Sci. Comput., 29(3) (2007), 10731092.CrossRefGoogle Scholar
[24]Quarteroni, A. and Valli, A., Domain Decomposition Methods for Partial Differential Equations, New York: Oxford University Press, 1999.Google Scholar
[25]Roth, M. J., Nodal Configurations and Voronoi Tessellations for Triangular Spectral Elements, Ph.D. thesis, University of Victoria, Victoria, BC, Canada, 2005.Google Scholar
[26]Schöberl, J., Melenk, J. M., Pechstein, C. and Zaglmayr, S., Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements, IMA J. Appl. Numer. Anal., 28(1) (2008), 124.Google Scholar
[27]Taylor, M. A., Wingate, B. A. and Vincent, R. E., An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal., 38(5) (2000), 17071720.Google Scholar
[28]Toselli, A. and Widlund, O., Domain decomposition methods-algorithms and theory, volume 34 of Springer Series in Computational Mathematics, Germany: Springer-Verlag, 2005.CrossRefGoogle Scholar
[29]Tu, X., Three-level BDDC in two dimensions, Int. J. Numer. Methods Eng., 69(1) (2007), 3359.Google Scholar