Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T08:21:48.449Z Has data issue: false hasContentIssue false

Edge Colourings of Graphs Avoiding Monochromatic Matchings of a Given Size

Published online by Cambridge University Press:  02 February 2012

CARLOS HOPPEN
Affiliation:
Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91509-900 Porto Alegre, Brazil (e-mail: choppen@ufrgs.br)
YOSHIHARU KOHAYAKAWA
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, Brazil (e-mail: yoshi@ime.usp.br)
HANNO LEFMANN
Affiliation:
Fakultät für Informatik, Technische Universität Chemnitz, Straße der Nationen 62, D-09107 Chemnitz, Germany (e-mail: Lefmann@Informatik.TU-Chemnitz.de)

Abstract

Let k and ℓ be positive integers. With a graph G, we associate the quantity ck,ℓ(G), the number of k-colourings of the edge set of G with no monochromatic matching of size ℓ. Consider the function ck,ℓ: given by ck,ℓ(n) = max {ck,ℓ(G): |V(G)| = n}, the maximum of ck,ℓ(G) over all graphs G on n vertices. In this paper, we determine ck,ℓ(n) and the corresponding extremal graphs for all large n and all fixed values of k and ℓ.

Type
Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alon, N., Balogh, J., Keevash, P. and Sudakov, B. (2004) The number of edge colorings with no monochromatic cliques. J. London Math. Soc. (2) 70 273288.Google Scholar
[2]Balogh, J. (2006) A remark on the number of edge colorings of graphs. Europ. J. Combin. 77 565573.CrossRefGoogle Scholar
[3]Erdős, P. (1974) Some new applications of probability methods to combinatorial analysis and graph theory. In Proc. Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton 1974, Congressus Numerantium X 3951.Google Scholar
[4]Erdős, P. and Gallai, T. (1959) On maximal paths and circuits. Acta Math. Acad. Sci. Hungar. 10 337356.CrossRefGoogle Scholar
[5]Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc. 52 10871091.CrossRefGoogle Scholar
[6]Lefmann, H., Hoppen, C. and Kohayakawa, Y. (2011) Hypergraphs with many Kneser colorings. Europ. J. of Combin., doi:10.1016/j.ejc.2011.09.025 (in press).CrossRefGoogle Scholar
[7]Hoppen, C., Kohayakawa, Y. and Lefmann, H. Edge colorings of graphs avoiding some fixed monochromatic subgraph with linear Turán number. Electron. Notes Discrete Math. (Proc. EUROCOMB 2011), in press doi:10.1016/j.endm.2011.09.076.Google Scholar
[8]Lefmann, H. and Person, Y. Exact results on the number of restricted edge colorings for some families of linear hypergraphs. Submitted.Google Scholar
[9]Lefmann, H., Person, Y., Rödl, V. and Schacht, M. (2009) On colorings of hypergraphs without monochromatic Fano planes, Combin. Probab. Comput. 18 803818.CrossRefGoogle Scholar
[10]Lefmann, H., Person, Y. and Schacht, M. (2010) A structural result for hypergraphs with many restricted edge colorings. J. Combin. 1 441475.Google Scholar
[11]Pikhurko, O. and Yilma, Z. B. The maximum number of K 3-free and K 4-free edge 4-colorings. J. London Math. Soc., to appear.Google Scholar
[12]Szemerédi, E. (1978) Regular partitions of graphs. In Problèmes Combinatoires et Théorie des Graphes: Colloq. Internat. CNRS, Orsay 1976, Vol. 260 of Colloq. Internat. CNRS, CNRS, pp. 399401.Google Scholar
[13]Yuster, R. (1996) The number of edge colorings with no monochromatic triangle. J. Graph Theory 21 441452.Google Scholar