Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-qcsxw Total loading time: 0.269 Render date: 2022-08-18T22:11:14.308Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A Short Proof of the Random Ramsey Theorem

Published online by Cambridge University Press:  22 December 2014

RAJKO NENADOV
Affiliation:
Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland (e-mail: rnenadov@inf.ethz.ch, steger@inf.ethz.ch)
ANGELIKA STEGER
Affiliation:
Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland (e-mail: rnenadov@inf.ethz.ch, steger@inf.ethz.ch)

Abstract

In this paper we give a short proof of the Random Ramsey Theorem of Rödl and Ruciński: for any graph F which contains a cycle and r ≥ 2, there exist constants c, C > 0 such that

$$ \begin{equation*} \Pr[G_{n,p} \rightarrow (F)_r^e] = \begin{cases} 1-o(1) &p\ge Cn^{-1/m_2(F)},\\ o(1) &p\le cn^{-1/m_2(F)}, \end{cases} \end{equation*} $$
where
$$ \begin{equation*} m_2(F) = \max_{J\subseteq F, v_J\ge 2} \frac{e_J-1}{v_J-2}. \end{equation*} $$
The proof of the 1-statement is based on the recent beautiful hypergraph container theorems by Saxton and Thomason, and Balogh, Morris and Samotij. The proof of the 0-statement is elementary.

MSC classification

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Balogh, J., Morris, R. and Samotij, W. (2012) Independent sets in hypergraphs. J. Amer. Math. Soc. arXiv:1204.6530, to appear.Google Scholar
[2]Chen, B., Matsumoto, M., Wang, J. F., Zhang, Z. F. and Zhang, J. X. (1994) A short proof of Nash-Williams' theorem for the arboricity of a graph. Graphs Combin. 10 2728.CrossRefGoogle Scholar
[3]Conlon, D. and Gowers, T. Combinatorial theorems in sparse random sets. arXiv:1011.4310Google Scholar
[4]Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 1761.Google Scholar
[5]Friedgut, E., Rödl, V. and Schacht, M. (2010) Ramsey properties of random discrete structures. Random Struct. Alg. 37 407436.CrossRefGoogle Scholar
[6]Gugelmann, L., Person, Y., Steger, A. and Thomas, H. (2012) A randomized version of Ramsey's theorem. Random Struct. Alg. 41 488505.CrossRefGoogle Scholar
[7]Łuczak, T., Ruciński, A. and Voigt, B. (1992) Ramsey properties of random graphs. J. Combin. Theory Ser. B 56 5568.CrossRefGoogle Scholar
[8]Marciniszyn, M., Skokan, J., Spöhel, R. and Steger, A. (2009) Asymmetric Ramsey properties of random graphs involving cliques. Random Struct. Alg. 34 419453.CrossRefGoogle Scholar
[9]Rödl, V. and Ruciński, A. (1993) Lower bounds on probability thresholds for Ramsey properties. In Combinatorics: Paul Erdős is Eighty, Vol. 1, Bolyai Society Mathematical Studies, pp. 317346.Google Scholar
[10]Rödl, V. and Ruciński, A. (1994) Random graphs with monochromatic triangles in every edge coloring. Random Struct. Alg. 5 253270.CrossRefGoogle Scholar
[11]Rödl, V. and Ruciński, A. (1995) Threshold functions for Ramsey properties. J. Amer. Math. Soc. 8 917942.CrossRefGoogle Scholar
[12]Saxton, D. and Thomason, A. (2012) Hypergraph containers. arXiv:1204.6595Google Scholar
17
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Short Proof of the Random Ramsey Theorem
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Short Proof of the Random Ramsey Theorem
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Short Proof of the Random Ramsey Theorem
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *