Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-zm8ws Total loading time: 0.15 Render date: 2021-06-14T07:23:52.835Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Non-Degenerate Spheres in Three Dimensions

Published online by Cambridge University Press:  28 January 2011

ROEL APFELBAUM
Affiliation:
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (e-mail: roel6@hotmail.com)
MICHA SHARIR
Affiliation:
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA (e-mail: michas@post.tau.ac.il)
Corresponding

Abstract

Let P be a set of n points in ℝ3, and let kn be an integer. A sphere σ is k-rich with respect to P if |σ ∩ P| ≥ k, and is η-non-degenerate, for a fixed fraction 0 < η < 1, if no circle γ ⊂ σ contains more than η|σ ∩ P| points of P.

We improve the previous bound given in [1] on the number of k-rich η-non-degenerate spheres in 3-space with respect to any set of n points in ℝ3, from O(n4/k5 + n3/k3), which holds for all 0 < η < 1/2, to O*(n4/k11/2 + n2/k2), which holds for all 0 < η < 1 (in both bounds, the constants of proportionality depend on η). The new bound implies the improved upper bound O*(n58/27) ≈ O(n2.1482) on the number of mutually similar triangles spanned by n points in ℝ3; the previous bound was O(n13/6) ≈ O(n2.1667) [1].

Type
Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Agarwal, P. K., Apfelbaum, R., Purdy, G. and Sharir, M. (2007) Similar simplices in a d-dimensional point set. In Proc. 23rd Annu. ACM Sympos. Comput. Geom., pp. 232–238.Google Scholar
[2]Agarwal, P. K., Nevo, E., Pach, J., Pinchasi, R., Sharir, M. and Smorodinsky, S. (2004) Lenses in arrangements of pseudocircles and their applications. J. Assoc. Comput. Mech. 51 139186.CrossRefGoogle Scholar
[3]Aronov, B., Koltun, V. and Sharir, M. (2005) Incidences between points and circles in three and higher dimensions. Discrete Comput. Geom. 33 185206.CrossRefGoogle Scholar
[4]Aronov, B., Pach, J., Sharir, M. and Tardos, G. (2004) Distinct distances in three and higher dimensions. Combin. Probab. Comput. 13 283293.CrossRefGoogle Scholar
[5]Aronov, B. and Sharir, M. (2002) Cutting circles into pseudo-segments and improved bounds for incidences. Discrete Comput. Geom. 28 475490.CrossRefGoogle Scholar
[6]Chazelle, B. (2005) Cuttings. In Handbook of Data Structures and Applications (Mehta, D. and Sahni, S., eds), Chap. 25, Chapman and Hall/CRC Press.Google Scholar
[7]Clarkson, K., Edelsbrunner, H., Guibas, L., Sharir, M. and Welzl, E. (1990) Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5 99160.CrossRefGoogle Scholar
[8]Edelsbrunner, H. (1987) Algorithms in Combinatorial Geometry, Springer.CrossRefGoogle Scholar
[9]Elekes, G. and Tóth, C. D. (2005) Incidences of not too degenerate hyperplanes. In Proc. 21st Annu. ACM Sympos. Comput. Geom., pp. 16–21.Google Scholar
[10]Katz, N. H. and Tardos, G. (2004) A new entropy inequality for the Erdős distance problem. In Towards a Theory of Geometric Graphs (Pach, J., ed.), Vol. 342 of Contemporary Mathematics, AMS, pp. 119126.CrossRefGoogle Scholar
[11]Marcus, A. and Tardos, G. (2006) Intersection reverse sequences and geometric applications. J. Combin. Theory Ser. A 113 675691.CrossRefGoogle Scholar
[12]Solymosi, J. and Vu, V. (2006) Near optimal bounds for the Erdős distinct distances problem in high dimensions. Combinatorica 28 113125.CrossRefGoogle Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Non-Degenerate Spheres in Three Dimensions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Non-Degenerate Spheres in Three Dimensions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Non-Degenerate Spheres in Three Dimensions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *