Home
Hostname: page-component-79b67bcb76-vkbph Total loading time: 0.153 Render date: 2021-05-13T07:24:52.759Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

# Local Expansion of Symmetrical Graphs

Published online by Cambridge University Press:  12 September 2008

Corresponding

## Abstract

A graph is vertex-transitive (edge-transitive) if its automorphism group acts transitively on the vertices (edges, resp.). The expansion rate of a subset S of the vertex set is the quotient e(S):= |∂(S)|/|S|, where ∂(S) denotes the set of vertices not in S but adjacent to some vertex in S. Improving and extending previous results of Aldous and Babai, we give very simple proofs of the following results. Let X be a (finite or infinite) vertex-transitive graph and let S be a finite subset of the vertices. If X is finite, we also assume |S| ≤|V(X)/2. Let d be the diameter of S in the metric induced by X. Then e(S) ≥1/(d + 1); and e(S) ≥ 2/(d +2) if X is finite and d is less than the diameter of X. If X is edge-transitive then |δ(S)|/|S| ≥ r/(2d), where ∂(S) denotes the set of edges joining S to its complement and r is the harmonic mean of the minimum and maximum degrees of X. – Diverse applications of the results are mentioned.

Type
Research Article
Information
Combinatorics, Probability and Computing , March 1992 , pp. 1 - 11

## Access options

Get access to the full version of this content by using one of the access options below.

## References

[1] Aldous, D.. On the Markov chain simulation method for uniform combinatorial distributions and simulated annealing. Probability in Engineering and Informational Sciences 1 (1987), 3346.CrossRefGoogle Scholar
[2] Alon, N. and Milman, V.. λ1, isoperimetric inequalities for graphs, and superconcentrators. J. Combinat. Theory-B 38 (1985), 7388.CrossRefGoogle Scholar
[3] Babai, L.. Arc transitive covering digraphs and their eigenvalues. J. Graph Theory 8 (1985), 363370.CrossRefGoogle Scholar
[4] Babai, L.. Bounded-round interactive proofs in finite groups. SIAM J. Discr. Math., to appear.Google Scholar
[5] Babai, L.. Local expansion of vertex-transitive graphs and random generation in finite groups. In Proc. 23rd ACM Symp. Theory of Computing, New Orleans LA, 1991, pp. 164174.Google Scholar
[6] Babai, L.. Deciding finiteness of matrix groups in Las Vegas polynomial time. In Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, Orlando FL 1992, pp. 3340.Google Scholar
[7] Babai, L.. Computational complexity in finite groups. Proc. International Congress of Mathematicians, Kyoto 1990, Springer, to appear.Google Scholar
[8] Babai, L.. Automorphism group, isomorphism, reconstruction: Chapter 27 in [18].Google Scholar
[9] Babai, L., Beals, R. M. and Rockmore, D.. Deciding finiteness of matrix groups in polynomial time. Manuscript, 1992.Google Scholar
[10] Babai, L., Cooperman, G., Finkelstein, L. and Seress, A.. Nearly linear time algorithms for permutation groups with a small base. In Proc. ISSAC'91 (Internat. Symp. on Symbolic and Algebraic Computation), Bonn 1991, pp. 200209.Google Scholar
[11] Babai, L., Fortnow, L. and Lund, C.. Nondeterministic exponential time has two-prover interactive protocols. Computational Complexity 1 (1991), 340.CrossRefGoogle Scholar
[12] Babai, L., Levin, L. A., Fortnow, L. and Szegedy, M.. Checking computations in polylogarithmic time. In Proc. 23rd ACM Symp. Theory of Computing, New Orleans LA 1991, pp. 2131.Google Scholar
[14] Bollobás, B.. Combinatorics. Cambridge Univ. Press, Cambridge 1986.Google Scholar
[15] Bollobás, B. and Leader, I.. Isoperimetric inequalities and fractional set systems. J. Combinat. Theory, Ser. A 56 (1991), 6374.CrossRefGoogle Scholar
[16] Feige, U., Goldwasser, S., Lovász, L., Safra, S. and Szegedy, M.. Approximating clique is almost NP-complete. In Proc. 32nd IEEE Conf. Found. Comp. Sci., San Juan, Puerto Rico 1991, pp. 212.Google Scholar
[17] Frankl, P. and Füredi, Z.. A short proof for a theorem of Harper about Hamming-spheres. Discrete Mathematics 34 (1981), 311313.CrossRefGoogle Scholar
[18] Graham, R. L., Grötschel, M. and Lovász, L., eds. Handbook of Combinatorics. North-Holland, Amsterdam, to appear.Google Scholar
[19] Gromov, M.. Groups of polynomial growth and expanding maps. Publ. Math. I. H. E. S. 53 (1981), 5373.CrossRefGoogle Scholar
[20] Harper, K. H.. Optimal numberings and isoperimetric problems on graphs. J. Combinatorial Theory 1 (1966), 385393.CrossRefGoogle Scholar
[21] Hart, S.. A note on the edges of the n-cube. Discr. Math. 14 (1976), 157163.CrossRefGoogle Scholar
[22] Lovász, L.. Combinatorial Problems and Exercises. Akadémiai Kiadó – North Holland, Budapest – Amsterdam, 1979Google Scholar
[23] Lubotzky, A., Phillips, R. and Sarnak, P.. Ramanujan graphs. Combinatorica 8 (1988), 261278.CrossRefGoogle Scholar
[24] Mader, W.. Über den Zusammenhang symmetrischer Graphen. Arch. Math. 22 (1971), 333336.CrossRefGoogle Scholar
[25] Margulis, G. A.. Explicit group theoretic constructions of combinatorial schemes and their applications for the construction of expanders and concentrators (in Russian). J. Probl. Info. Transmission 1988.Google Scholar
[26] Mohar, B. and Woess, W.. A survey on spectra of infinite graphs. Bull. London Math. Soc. 21 (1989), 209234.CrossRefGoogle Scholar
[27] Varopoulos, N. Th.. Isoperimetric inequalities and Markov chains. J. Funct. Anal. 63 (1985), 215239.CrossRefGoogle Scholar
[28] Varopoulos, N. Th.. Théorie du potential sur les groupes et des variétés. Comptes Rendus Acad. Sci. Paris 302, Sér. I. no 6 (1986), 203205.Google Scholar
[29] Watkins, M. E.. Connectivity of transitive graphs. J. Comb. Theory 8 (1970), 2329.CrossRefGoogle Scholar

# Send article to Kindle

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Local Expansion of Symmetrical Graphs
Available formats
×

# Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Local Expansion of Symmetrical Graphs
Available formats
×

# Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Local Expansion of Symmetrical Graphs
Available formats
×
×