Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-2jsqd Total loading time: 0.503 Render date: 2021-06-21T02:36:44.261Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The Induced Removal Lemma in Sparse Graphs

Published online by Cambridge University Press:  30 September 2019

Shachar Sapir
Affiliation:
School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel
Asaf Shapira
Affiliation:
School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel
Corresponding
E-mail address:

Abstract

The induced removal lemma of Alon, Fischer, Krivelevich and Szegedy states that if an n-vertex graph G is ε-far from being induced H-free then G contains δH(ε) · nh induced copies of H. Improving upon the original proof, Conlon and Fox proved that 1/δH(ε)is at most a tower of height poly(1/ε), and asked if this bound can be further improved to a tower of height log(1/ε). In this paper we obtain such a bound for graphs G of density O(ε). We actually prove a more general result, which, as a special case, also gives a new proof of Fox’s bound for the (non-induced) removal lemma.

Type
Paper
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Supported in part by ISF Grant 1028/16 and ERC Starting Grant 633509.

References

Alon, N., Duke, R. A., Lefmann, H., Rödl, V. and Yuster, R. (1994) The algorithmic aspects of the regularity lemma. J. Algorithms 16 80109.CrossRefGoogle Scholar
Alon, N., Fischer, E., Krivelevich, M. and Szegedy, M. (2000) Efficient testing of large graphs. Combinatorica 20 451476.CrossRefGoogle Scholar
Conlon, D. and Fox, J. (2012) Bounds for graph regularity and removal lemmas. Geom. Funct. Anal. 22 11911256.CrossRefGoogle Scholar
Conlon, D. and Fox, J. (2013) Graph removal lemmas. In Surveys in Combinatorics 2013, Vol. 409 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 150.Google Scholar
Duke, R., Lefmann, H. and Rödl, V. (1995) A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM J. Comput. 24 598620.CrossRefGoogle Scholar
Erdös, P., Frankl, P. and Rödl, V. (1986) The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin. 2 113121.CrossRefGoogle Scholar
Fox, J. (2011) A new proof of the graph removal lemma. Ann. of Math. 174 561579.CrossRefGoogle Scholar
Gowers, W. T. (1997) Lower bounds of tower type for Szemerédi’s uniformity lemma. Geom. Funct. Anal. 7 322337.CrossRefGoogle Scholar
Moshkovitz, G. and Shapira, A. (2019) A sparse regular approximation lemma. Trans. Amer. Math. Soc. 371 67796814.CrossRefGoogle Scholar
Ruzsa, I. Z. and Szemerédi, E. (1978) Triple systems with no six points carrying three triangles. In Combinatorics (Keszthely, 1976), Vol. II, Vol. 18 of Colloquia Mathematica Societatis János Bolyai, pp. 939945.Google Scholar
Szemerédi, E. (1978) Regular partitions of graphs. In Proc. Colloque Inter. CNRS, pp. 399401.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Induced Removal Lemma in Sparse Graphs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Induced Removal Lemma in Sparse Graphs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Induced Removal Lemma in Sparse Graphs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *