Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-4xs5l Total loading time: 0.162 Render date: 2021-06-13T00:49:33.001Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Distinct Distances from Three Points

Published online by Cambridge University Press:  30 September 2015

MICHA SHARIR
Affiliation:
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (e-mail: michas@tau.ac.il)
JÓZSEF SOLYMOSI
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver BC, V6T 1Z4, Canada (e-mail: solymosi@math.ubc.ca)
Corresponding

Abstract

Let p 1, p 2, p 3 be three noncollinear points in the plane, and let P be a set of n other points in the plane. We show that the number of distinct distances between p 1, p 2, p 3 and the points of P is Ω(n 6/11), improving the lower bound Ω(n 0.502) of Elekes and Szabó [4] (and considerably simplifying the analysis).

Type
Paper
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Elekes, G. (2002) Sums versus products in number theory, algebra and Erdős geometry: A survey. In Paul Erdős and his Mathematics II, Vol. 11 of Bolyai Mathematical Society Studies, Budapest, pp. 241–290.Google Scholar
[2] Elekes, G. and Rónyai, L. (2000) A combinatorial problem on polynomials and rational functions, J. Combin. Theory Ser. A 89 120.CrossRefGoogle Scholar
[3] Elekes, G., Simonovits, M. and Szabó, E. (2009) A combinatorial distinction between unit circles and straight lines: How many coincidences can they have? Combin. Probab. Comput. 18 691705.CrossRefGoogle Scholar
[4] Elekes, G. and Szabó, E. (2012) How to find groups? (and how to use them in Erdős geometry?) Combinatorica 32 537571.CrossRefGoogle Scholar
[5] Erdős, P., Lovász, L. and Vesztergombi, K. (1989) On the graph of large distance. Discrete Comput. Geom. 4 541549.CrossRefGoogle Scholar
[6] Pach, J. and Sharir, M. (1998) On the number of incidences between points and curves. Combin. Probab. Comput. 7 121127.CrossRefGoogle Scholar
[7] Pach, J. and de Zeeuw, F. (2014) Distinct distances on algebraic curves in the plane. In Proc. 30th Symposium on Computational Geometry, pp. 549–557. Also in arXiv:1308.0177.Google Scholar
[8] Sharir, M., Sheffer, A. and Solymosi, J. (2013) Distinct distances on two lines. J. Combin. Theory Ser. A 20 17321736.CrossRefGoogle Scholar
[9] Székely, L. (1997) Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput. 6 353358.CrossRefGoogle Scholar
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Distinct Distances from Three Points
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Distinct Distances from Three Points
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Distinct Distances from Three Points
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *