Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T15:30:07.077Z Has data issue: false hasContentIssue false

Potential Noradrenergic Targets for Cognitive Enhancement in Schizophrenia

Published online by Cambridge University Press:  07 November 2014

Abstract

Substantial evidence suggests that alterations in noradrenergic function contribute to the cognitive impairments of schizophrenia. Activation of post-junctional α2a-adrenergic receptors in the prefrontal cortex by the α2a-selective agonist guanfacine has demonstrated some preliminary benefit in subjects with schizophrenia treated with atypical antipsychotics. α1-drenergic receptor activity may be less important in mediating the cognitive impairments of schizophrenia, β-adrenergic receptors may serve as another potential target for cognitive remediation in schizophrenia. However, the potential increase in memory consolidation in schizophrenia patients produced by β-adrenergic agonists may be outweighed by the impairment in cognitive flexibility and executive functioning produced by α-adrenergic agonists. Finally, norepinephrine reuptake inhibitors, such as atomoxetine, hold promise as potential cognitive enhancers in schizophrenia because of their ability to indirectly but selectively increase extracellular dopamine concentrations in the prefrontal cortex.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arnsten, AFT, Cai, JX, Murphy, BL, Goldman-Rakic, PS. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology. 1994;116:143151.CrossRefGoogle ScholarPubMed
2.Goldman-Rakic, PS, Lidow, MS, Smiley, JF, Williams, MS. The anatomy of dopamine in monkey and human prefrontal cortex. J Neural Transm Suppl. 1992;36:163177.Google ScholarPubMed
3.Brozoski, T, Brown, R, Rosvold, H, Goldman, P. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkeys. Science. 1979;205:929932.CrossRefGoogle Scholar
4.Meltzer, HY, McGurk, SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull. 1999;25:233–55.CrossRefGoogle ScholarPubMed
5.Crow, TJ. Cortical synapses and reinforcement. Nature. 1968;219;736737.CrossRefGoogle ScholarPubMed
6.Mason, ST, Iversen, SD. Theories of dorsal bundle extinction effects. Brain Research Review. 1979;1;107137.CrossRefGoogle Scholar
7.Arnsten, AFT, Goldman-Rakic, PGR. Selective prefrontal cortical projections to the region of the locus ceruleus and raphe nuclei in the Rhesus monkey. Brain Res. 1984;306;918.CrossRefGoogle Scholar
8.Coull, JT. Pharmacological manipulations of the alpha 2-noradrenergic system. Effects on cognition. Drugs Aging. 1994;5:116126CrossRefGoogle ScholarPubMed
9.Goldman-Rakic, PS. Circuitry of the primate prefrontal cortex and the regulation of behavior by representational memory. In: Plum, F, ed. Handbook of Physiology: The Nervous System, Higher Function of the Brain. Bethesdam Md: Am. Physiological Society; 1987.Google Scholar
10.Carli, M, Robbins, TW, Evenden, JL, Everitt, BJ. Effects of lesions to ascending noradrenergic neurons on performance of a 5-choice serial reaction task in rats. Implications for theories of dorsal noradrenergic bundle functions based on selective attention and arousal. Behav Brain Res. 1983;9;361380.CrossRefGoogle Scholar
11.Cole, BJ, Robbins, TW. Forebrain norepinephrine: role in controlled information processing in the rat. Neuropsychopharmacology. 1992;7:129141.Google ScholarPubMed
12.Devauges, V, Sara, SJ. Activation of the noradrenergic system facilitates an attention shift in the rat. Behav Brain Res. 1990;39:1929.CrossRefGoogle ScholarPubMed
13.Stein, L, Belluzzi, JD, Wise, CD. Memory enhancement by central administration of norepinephrine. Brain Res. 1975;84;329335.CrossRefGoogle ScholarPubMed
14.Hamburg, MD, Cohen, RP. Memory access pathway: role of adrenergic versus cholinergic neurons. Pharmacol Biochem Behav. 1973;1;295300.CrossRefGoogle ScholarPubMed
15.Roberts, RB, Flexner, JB, Flexner, LB. Some evidence for the involvement of adrenergic sites in the memory trace. Proc Natl Acad Sci U S A. 1970;66:310313.CrossRefGoogle ScholarPubMed
16.Lake, CR, Sternberg, DE, van Kammen, DP, et al.Schizophrenia: elevatedcerebrospinal fluid norepinephrine. Science. 1980;207:331333.CrossRefGoogle ScholarPubMed
17.Kemali, D, Del-Vecchio, M, Maj, M. Increased noradrenaline levels in CSF and plasma of schizophrenic patients. Biol Psychiatry. 1982;17:711717.Google ScholarPubMed
18.van Kammen, DP, Peters, J, van Kammen, WB, et al.CSF norepinephrine in schizophrenia is elevated prior to relapse after haloperidol withdrawal. Biol Psychiatry. 1989;26:176188.CrossRefGoogle ScholarPubMed
19.van Kammen, DP, Peters, J, Yao, J, et al.Norepinephrine in acute exacerbations of chronic schizophrenia. Arch Gen Psychiatry. 1990;47;161168.CrossRefGoogle ScholarPubMed
20.Crow, TJ, Baker, HF, Cross, AJ, et al.Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. Br J Psychiatry. 1979;134;249256.CrossRefGoogle ScholarPubMed
21.Farley, IJ, Price, KS, McCullouough, E, et al.Norepinephrine in chronic paranoid schizophrenia: above-normal levels in limbic forebrain. Science. 1978;200:456457CrossRefGoogle ScholarPubMed
22.Bird, ED, Spokes, EG, Iversen, LL. Brain norepinephrine and dopamine in schizophrenia. Science. 1974;204:9394.CrossRefGoogle Scholar
23.Brown, AS, Gewirtz, G, Harkavy-Friedman, J, et al.Effects of clozapine on plasma catecholamines and relation to treatment response in schizophrenia: a within-subject comparison with haloperidol. Neuropsychopharmacohgy. 1997;17:317325.CrossRefGoogle ScholarPubMed
24.van Kammen, DP, Peters, JL, van Kammen, WB, et al.Clonidine treatment of schizophrenia: can we predict treatment response? Psychiatry Res. 1989;27;297311.CrossRefGoogle ScholarPubMed
25.Arnsten, AF, Goldman-Rakic, PS. Alpha 2-adrenergic mechanisms in prefrontat cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230:12731276.CrossRefGoogle ScholarPubMed
26.Raskind, MA, Peskind, ER, Halter, JB, Jimerson, DC. Norepinephrine a MHPG levels in CSF and plasma in Alzheimer's disease. Arch Gen Psychiatry. 1984;4:343–334CrossRefGoogle Scholar
27.Abi-Dargham, A, Mawlawi, O, Lombardo, I, et al.Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22:37083719.CrossRefGoogle ScholarPubMed
28.Bridge, TP, Kleinman, JE, Karoum, F, Wyatt, RJ. Postmortem central catecholamines and ante mortem cognitive impairment in elderly schizophrenics and controls. Biol Psychiatry. 1985;14:5761.Google Scholar
29.Folstein, MF, Folstein, SE, McHugh, PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189198.CrossRefGoogle ScholarPubMed
30.Powchik, P, Davidson, M, Haroutunian, V, et al.Postmortem studies in schizophrenia. Schizophr Bull. 1998;24:325–41.CrossRefGoogle ScholarPubMed
31.Goldman-Rakic, PS, Lidow, MS, Gallager, DW. Overlap of dopaminergic, adrenergic and serotonergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci. 1990;10:21252138.CrossRefGoogle ScholarPubMed
32.Arnsten, AF, Cai, JX, Goldman-Rakic, PS. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci. 1988;8:42874298.CrossRefGoogle ScholarPubMed
33.Kobilka, BK, Matsui, H, Kobilka, TS, et al.Cloning and sequencing, and exptession of the gene coding for the human platelet alpha-2 adrenergic receptor. Science. 1987;238:650656.CrossRefGoogle ScholarPubMed
34.Regan, JW, Kobilka, TS, Yang-Feng, TL, et al.Cloning and expression of a human kidney cDNA for an a-2 adrenergic receptor subtype. Proc Natl Acad Sci U S A. 1988;85:63016305.CrossRefGoogle Scholar
35.Lomasney, JW, Lorenz, W, Allen, LF, et al.Expansion of the a-2 adrenergic family: cloning and characterization of human a-2 adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci U S A. 1990;87:50945098.CrossRefGoogle Scholar
36.Scheinin, M, Lomasney, JW, Hayden-Hixson, DM, et al.Distribution of a-2 adrenergic receptor subtype gene expression in rat brain. Mol Brain Res. 1994;21;133149.CrossRefGoogle Scholar
37.Nicholas, AP, Pieribone, V, Hokfelt, T. Distribution of mRNA's for a-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol. 1993;328:575594.CrossRefGoogle Scholar
38.Buzsaki, G, Kennedy, B, Solt, VB, Ziegler, M. Noradrenergic control of thalamic oscillation: the role of alpha-2 receptors. Eur J Pharmacol. 1991;3:222229.Google ScholarPubMed
39.Reis, DJ, Granata, AR, Joh, TH, Ross, CA, Ruggiero, DA, Park, DH. Brain stem catecholamine mechanisms in tonic and reflex control of blood pressure. Hypertension. 1984;6(suppl 11):715.CrossRefGoogle ScholarPubMed
40.Aoki, C, Go, CG, Venkatesan, C, Kurose, H. Perikaryal and synaptic localization of α-2A adrenergic receptor like immunoteactivity. Brain Res. 1994;650:181204.CrossRefGoogle Scholar
41.Uhlen, S, Muceniece, R, Rangel, N, Tiger, G, Wikberg, J. Comparison of the binding activities of some drugs on a-2A, a-2B, and a-2C-adrenoreceptors and non-adrenergic imidazoline sites in the guinea pig. Pharmacol Toxicoi. 1995;76:353364.CrossRefGoogle Scholar
42.Arnsten, AFT, Steere, JC, Hunt, RD. The contribution of alpha-2 noradrenergic mechanisms to prefrontal cortical cognitive function. Arch Gen Psychiatry. 1996;53:448455.CrossRefGoogle ScholarPubMed
43.Mair, RG, McEntee, WJ. Cognitive enhancement in Korsakoff's psychosis by clonidine: a comparison with 1-dopa and ephedrine. Psychopharmacology (Berl). 1986;88:374380.CrossRefGoogle Scholar
44.Moffoot, A, O'Carroll, RE, Murray, C, Dougall, N, Ebmeier, K, Goodwin, GM. Clonidine infusion increases uptake of 99mTc-Exametazime in anterior cingulate cortex in Korsakoff's psychosis. Psychol Med. 1994;24:5361.CrossRefGoogle ScholarPubMed
45.Fields, RB, van Kammen, DP, Peters, JL, et al.Clonidine improves memory function in schizophrenia independently from changes in psychosis: preliminary findings. Schizophr Res. 1988;1:417423.CrossRefGoogle ScholarPubMed
46.Kugler, J, Krauskoff, R, Seus, R, Brecht, HM, Raschig, A. Differences in psychic performance with guanfacine and clonidine in normotensive subjects. J Ciin Pharmacol. 1980;10:715805.Google ScholarPubMed
47.Jakala, P, Riekkinen, M, Sirvio, J, et al.Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology. 1999;20:460470.CrossRefGoogle ScholarPubMed
48.Friedman, JI, Adler, DN, Temporini, HD, et al.Guanfacine treatment of cognitive impairment in schizophrenia. Neuropsychopharmocology. 2001;25:402409.CrossRefGoogle ScholarPubMed
49.Moghaddam, B, Bunney, BS. Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem. 1990;54:17551760.CrossRefGoogle ScholarPubMed
50.Kuroki, T, Meltzer, HY, Ichikawa, J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther. 1999;288:774781.Google ScholarPubMed
51.Arnsten, AF, Goldman-Rakic, PS. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry. 1998;55:3623636238.CrossRefGoogle ScholarPubMed
52.Franowicz, JS, Arnsten, AF. Treatment with the noradrenergic alpha-2 agonist clonidine, but not diazepam, improves spatial working memory in normal young rhesus monkeys. Neuropsychopharmacology. 1999;21:611621.CrossRefGoogle Scholar
53.Mao, ZM, Arnsten, AF, Li, BM. Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol Psychiatry. 1999;46:12591265.CrossRefGoogle ScholarPubMed
54.Cai, JX, Ma, YY, Xu, L, Hu, XT. Reserpine impairs spatial working memory performance in monkeys: reversal by the alpha 2-adrenergic agonist clonidine. Brain Res. 1993;18:191196.Google Scholar
55.Rama, P, Linnankoski, I, Tanila, H, Pertovaara, A, Carlson, S. Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmacol Biochem Behav. 1996;55:415–22.CrossRefGoogle ScholarPubMed
56.Steete, JC, Arnsten, AF. The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci. 1997;111:883891.CrossRefGoogle Scholar
57.Arnsten, AF, Jentsch, JD. The alpha-1 adrenergic agonist, cirazoline, impairs spatial working memory performance in aged monkeys. Pharmacol Biochem Behav. 1997;58:5559.CrossRefGoogle ScholarPubMed
58.Mao, ZM, Arnsten, AF, Li, BM. Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol Psychiatry. 1999;46:12591265.CrossRefGoogle ScholarPubMed
59.Arnsten, AFT, Mathew, R, Ubriani, R, Taylor, JR, Li, BM. a-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry. 1999;45:2631.CrossRefGoogle Scholar
60.Li, BM, Mei, ZT. Delayed-response deficit induced by local injection of the alpha 2-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav Neural Biol. 1994;62:134139.CrossRefGoogle ScholarPubMed
61.Arnsten, AF, Goldman-Rakic, PS. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry. 1998;55:362368.CrossRefGoogle ScholarPubMed
62.Murphy, BL, Arnsten, AF, Goldman-Rakic, PS, Roth, RH. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci U S A. 1996;93:13251329.CrossRefGoogle ScholarPubMed
63.Finlay, JM, Zigmond, MJ, Abercrombie, ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience. 1995;64:619628.CrossRefGoogle ScholarPubMed
64.Birnbaum, S, Gobeske, KT, Auerbach, J, Taylor, JR, Arnsten, AF. A role for norepinephrine in stress-induced cognitive deficits: alpha-1-adrenoceptor mediation in the prefrontal cortex. Biol Psychiatry. 1999;46:12661274.CrossRefGoogle ScholarPubMed
65.McGaugh, JL, Cahill, L, Roozendaal, B. Involvement of the amygdala in memory storage: interaction with other brain systems. Proc Natl Acad Sci U S A. 1996;93:1350813514.CrossRefGoogle ScholarPubMed
66.McGaugh, JL. Memory—a century of consolidation. Science. 2000;287:248251.CrossRefGoogle ScholarPubMed
67.Cahill, L, Prins, B, Weber, M, McGaugh, JL. Beta-adrenergic activation and memory for emotional events. Nature. 1994;371:702704.CrossRefGoogle ScholarPubMed
68.Southwick, SM, Davis, M, Homer, B, et al.Relationship of enhanced norepinephrine activity during memory consolidation to enhanced long-term memory in humans. Am J Psychiatry. 2002;159:14201422.CrossRefGoogle ScholarPubMed
69.Beversdorf, DQ, White, DM, Chever, DC, Hughes, JD, Bornstein, RA. Central beta-adrenergic modulation of cognitive flexibility. Neuroreport. 2002;13:25052507.CrossRefGoogle ScholarPubMed
70.Beversdorf, DQ, Hughes, JD, Steinberg, BA, Lewis, LD, Heilman, KM. Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport. 1999;10:27632767.CrossRefGoogle ScholarPubMed
71.Fudge, JL, Emiliano, AB. The extended amygdala and the dopamine system: another piece of the dopamine puzzle. J Neuropsychiatry Clin Neurosci. 2003;15:306316.CrossRefGoogle ScholarPubMed
72.Gur, RE, McGrath, C, Chan, RM, et al.An fMRI study of facial emotion processing in patients with schizophrenia. Am J Psychiatry. 2002;159:19921999.CrossRefGoogle ScholarPubMed
73.Hempel, A, Hempel, E, Schonknecht, P, Stippich, C, Schroder, J. Impairment in basal limbic function in schizophrenia during affect recognition. Psychiatry Res. 2003;122:115124.CrossRefGoogle ScholarPubMed
74.Kosaka, H, Omori, M, Murata, T, et al.Differential amygdala response during facial recognition in patients with schizophrenia: an fMRI study. Schizophr Res. 2002;57:8795.CrossRefGoogle ScholarPubMed
75.Schneider, F, Weiss, U, Kessler, C, et al.Differential amygdala activation in schizophrenia during sadness. Schizophr Res. 1998;34:133142.CrossRefGoogle ScholarPubMed
76.Cheine, M, Ahonen, J, Wahlbeck, K. Beta-blocker supplementation of standard drug treatment for schizophrenia. Cochrane Database Syst Rev. 2001:CD000234.Google Scholar
77.Martin, W, Unutzer, J, Szuba, MP. Exacerbation of psychosis associated with inhaled albuterol. J Clin Psychopharmacol. 1995;15:446447.CrossRefGoogle ScholarPubMed
78.Daniel, DG, Weinberger, DR, Jones, DW, et al.The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci. 1991;11:19071917.CrossRefGoogle ScholarPubMed
79.Bymaster, FP, Katner, JS, Nelson, DL, et al.Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27:699711.CrossRefGoogle Scholar
80.Tanda, G, Pontieri, FE, Frau, R, Di Chiara, G. Contribution of blockade of the noradrenaline carrier to the increase of extracellular dopamine in the rat prefrontal cortex by amphetamine and cocaine. Eur J Neurosci. 1997;9:20772085.CrossRefGoogle Scholar
81.Yamamoto, BK, Novotney, S. Regulation of extracellular dopamine by the norepinephrine transporter. J Neurochem. 1998;71:274280.CrossRefGoogle ScholarPubMed
82.Devoto, P, Flore, G, Pani, L, Gessa, GL. Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex. Mol Psychiatry. 2001;6:657664.CrossRefGoogle ScholarPubMed
83.Spencer, T, Biederman, J, Wilens, T, et al.Effectiveness and tolerability of tomoxetine in adults with attention deficit hyperactivity disorder. Am J Psychiatry. 1998;155:693695.CrossRefGoogle ScholarPubMed
84.Michelson, D, Adler, L, Spencer, T, et al.Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol Psychiatry. 2003;53:112120.CrossRefGoogle ScholarPubMed
85.Michelson, D, Faries, D, Wernicke, J, et al.Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-response study. Pediatrics. 2001;108:E83.CrossRefGoogle ScholarPubMed
86.Heil, SH, Holmes, HW, Bickel, WK, et al.Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend. 2002;67:149156.CrossRefGoogle ScholarPubMed