Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T14:25:42.819Z Has data issue: false hasContentIssue false

Disturbances of phosphatidylcholines metabolism in major depressive disorder

Published online by Cambridge University Press:  17 January 2023

Yue Wang
Affiliation:
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Chongqing Key Laboratory of Neurobiology, Chongqing, China
Xiangyu Chen
Affiliation:
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Chongqing Key Laboratory of Neurobiology, Chongqing, China
Zhi Chen
Affiliation:
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Chongqing Key Laboratory of Neurobiology, Chongqing, China
Heming Yu
Affiliation:
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Chongqing Key Laboratory of Neurobiology, Chongqing, China
Yu Tian
Affiliation:
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Chongqing Key Laboratory of Neurobiology, Chongqing, China
Yong He
Affiliation:
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Chongqing Key Laboratory of Neurobiology, Chongqing, China
Ke Cheng*
Affiliation:
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Chongqing Key Laboratory of Neurobiology, Chongqing, China
Peng Xie*
Affiliation:
NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Chongqing Key Laboratory of Neurobiology, Chongqing, China Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
*
*Authors for correspondence: Ke Cheng and Peng Xie, Emails: jackchengke@163.com; xiepeng@cqmu.edu.cn
*Authors for correspondence: Ke Cheng and Peng Xie, Emails: jackchengke@163.com; xiepeng@cqmu.edu.cn

Abstract

Objective

Major depressive disorder (MDD) is a common neuropsychiatry disorder with high prevalence and recurrence rate, but the misdiagnosis rate is inevitable due to the shortage of objective laboratory-based diagnostic criteria. This study is focused on the disturbance of lipid metabolism, providing potential biomarkers for diagnosing.

Methods

Lipid metabolism-related molecules in plasma of 42 drug-naïve MDD patients and 49 healthy people were measured by liquid chromatography-mass spectrometry. Further to evaluate the diagnostic values of changed metabolites, these molecules were evaluated by the receiver operating characteristic curve. Based on the significant role of phosphatidylcholine (PC) disturbance in depression, oxidization of PCs, oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC), IL-8 and caspase-3 in hippocampus, and serum of chronic lipopolysaccharide (cLPS) depression mice were detected by ELISA.

Results

Compared with healthy control, MDD patients expressed higher 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (16:0-16:0 PC, DPPC), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (16:0-20:4 PC, PAPC), 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (16:0-18:0 PC), glycocholic acid, taurocholic acid, glycoursodeoxycholic acid, and chenodeoxycholic acid glycine conjugate, and lower 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 20:0). The 16:0-20:4 PC showed the great diagnostic value for MDD with an area under the curve (AUC) of 0.9519, and combination of 16:0 PC, 16:0-18:0 PC, and 16:0-20:4 PC exhibited the highest diagnostic value with AUC of 0.9602. OxPAPC was certified increase in hippocampus and serum of cLPS depression mice, which further supported PCs disorder participated in depression.

Conclusion

This research offers 16:0-20:4 PC as the latent diagnostic indicator for MDD and hints the important role of PCs in depression.

Type
Original Research
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Y.W. and X.C. contributed equally.

References

Dean, J, Keshavan, M. The neurobiology of depression: an integrated view. Asian J Psychiatr. 2017;27:101111.CrossRefGoogle ScholarPubMed
Mitchell, AJ, Vaze, A, Rao, S. Clinical diagnosis of depression in primary care: a meta-analysis. Lancet. 2009;374(9690):609619.CrossRefGoogle ScholarPubMed
Zheng, P, Chen, JJ, Xie, P, et al. A novel urinary metabolite signature for diagnosing major depressive disorder. J Proteome Res. 2013;12(12):59045911.CrossRefGoogle ScholarPubMed
Wang, Y, Chen, JJ, Xie, P, et al. Urinary peptidomics identifies potential biomarkers for major depressive disorder. Psychiatry Res. 2014;217(1-2):2533.CrossRefGoogle ScholarPubMed
Zheng, P, Fang, Z, Xie, P, et al. Metabolite signature for diagnosing major depressive disorder in peripheral blood mononuclear cells. J Affect Disord. 2016;195:7581.CrossRefGoogle ScholarPubMed
Liu, XY, Li, J, Xu, GW, et al. Plasma lipidomics reveals potential lipid markers of major depressive disorder. Anal Bioanal Chem. 2016;408(23):64976507.CrossRefGoogle ScholarPubMed
Gui, SW, Liu, YY, Xie, P, et al. Plasma disturbance of phospholipid metabolism in major depressive disorder by integration of proteomics and metabolomics. Neuropsychiatr Dis Treat. 2018;14:14511461.CrossRefGoogle ScholarPubMed
Zhou, XY, Liu, LX, Xie, P, et al. Polyunsaturated fatty acids metabolism, purine metabolism and inosine as potential independent diagnostic biomarkers for major depressive disorder in children and adolescents. Mol Psychiatry. 2019;24(10):14781488.CrossRefGoogle ScholarPubMed
Zhang, HP, Liu, XL, Xie, P, et al. Circulating microRNA 134 sheds light on the diagnosis of major depressive disorder. Transl Psychiatry. 2020;10(1):95.CrossRefGoogle ScholarPubMed
Pan, JX, Xia, JJ, Xie, P, et al. Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Transl Psychiatry. 2018;8(1):130.CrossRefGoogle ScholarPubMed
Pu, JC, Liu, YY, Xie, P, et al. An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Mol Psychiatry. 2021;26(8):42654276.CrossRefGoogle ScholarPubMed
Watkins, PA, Hamilton, JA, Katz, R, et al. Brain uptake and utilization of fatty acids: applications to peroxisomal biogenesis diseases. Journal of Molecular Neuroscience. 2001;16(2-3):8792; discussion 151-7.CrossRefGoogle ScholarPubMed
Gohar, SM, Dieset, I, Melle, I, et al. Association between serum lipid levels, osteoprotegerin and depressive symptomatology in psychotic disorders. Eur Arch Psychiatry Clin Neurosci. 2019;269(7):795802.CrossRefGoogle ScholarPubMed
Wagner, CJ, Musenbichler, C, Lenz, B, et al. LDL cholesterol relates to depression, its severity, and the prospective course. Prog Neuropsychopharmacol Biol Psychiatry. 2019;92:405411.CrossRefGoogle ScholarPubMed
Rethorst, CD, Bernstein, I, Trivedi, MH. Inflammation, obesity, and metabolic syndrome in depression: analysis of the 2009-2010 National Health and Nutrition Examination Survey (NHANES). J Clin Psychiatry. 2014;75(12):e1428e1432.CrossRefGoogle ScholarPubMed
Zhan, Y, Yang, YT, Xie, P, et al. Plasma-based proteomics reveals lipid metabolic and immunoregulatory dysregulation in post-stroke depression. Eur Psychiatry. 2014;29(5):307315.CrossRefGoogle ScholarPubMed
Jung, J, Lee, SM, Park, JY, et al. Lipidomics reveals that acupuncture modulates the lipid metabolism and inflammatory interaction in a mouse model of depression. Brain Behav Immun. 2021;94:424436.CrossRefGoogle Scholar
Huang, TY, Balasubramanian, R, Hankinson, SE, et al. Associations of depression status with plasma levels of candidate lipid and amino acid metabolites: a meta-analysis of individual data from three independent samples of US postmenopausal women. Mol Psychiatry. 2021;26(7):33153327.CrossRefGoogle ScholarPubMed
Demirkan, A, Isaacs, A, Duijn, CMV, et al. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J Psychiatr Res. 2013;47(3):357362.CrossRefGoogle Scholar
Messamore, E, Almeida, DM, Jandacek, RJ, McNamara, RK. Polyunsaturated fatty acids and recurrent mood disorders: phenomenology, mechanisms, and clinical application. Prog Lipid Res. 2017;66:113.CrossRefGoogle ScholarPubMed
He, Y, Li, W, Xie, P, et al. Major depression accompanied with inflammation and multiple cytokines alterations: evidences from clinical patients to macaca fascicularis and LPS induced depressive mice model. J Affect Disord. 2020;271:262271.CrossRefGoogle ScholarPubMed
Marquardt, D, Heberle, FA, Katsaras, J, et al. The structures of polyunsaturated lipid bilayers by joint refinement of neutron and X-ray scattering data. Chem Phys Lipids. 2020;229:104892.CrossRefGoogle ScholarPubMed
Brown, HA, Marnett, LJ. Introduction to lipid biochemistry, metabolism, and signaling. Chem Rev. 2011;111(10):58175820.CrossRefGoogle ScholarPubMed
Lu, JH, Guo, SY, Yin, HY, et al. Identification of a novel series of anti-inflammatory and anti-oxidative phospholipid oxidation products containing cyclopentenone moiety in vitro and in vivo: implication in atherosclerosis. J Biol Chem. 2017;292(13):53785391.CrossRefGoogle ScholarPubMed
Philippova, M, Resink, T, Erne, P, Bochkov, V. Oxidised phospholipids as biomarkers in human disease. Swiss Med Wkly. 2014;144:w14037.Google ScholarPubMed
Qin, J, Goswami, R, Balabanov, R, Dawson, G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J Neurosci Res. 2007;85(5):977984.CrossRefGoogle ScholarPubMed
Miketova, P, Kaemingk, K, Moore, IM, et al. Oxidative changes in cerebral spinal fluid phosphatidylcholine during treatment for acute lymphoblastic leukemia. Biol Res Nurs. 2005;6(3):187195.CrossRefGoogle ScholarPubMed
Becker, M, Pinhasov, A, Ornoy, A. Animal models of depression: what can they teach us about the human disease? Diagnostics (Basel). 2021;11(1):123.CrossRefGoogle ScholarPubMed
Leskanicova, A, Babincak, M, Kiskova, T, et al. Sex-dependent differences in stress-induced depression in Wistar rats are accompanied predominantly by changes in phosphatidylcholines and sphingomyelins. J Physiol Pharmacol. 2021;72(4):623635.Google ScholarPubMed
Watson, AD, Leitinger, N, Berliner, JA, et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272(21):1359713607.CrossRefGoogle ScholarPubMed
Subbanagounder, G, Deng, YJ, Borromeo, C, Dooley, AN, Berliner, JA, Salomon, RG. Hydroxy alkenal phospholipids regulate inflammatory functions of endothelial cells. Vascul Pharmacol. 2002;38(4):201209.CrossRefGoogle ScholarPubMed
Salomon, RG. Structural identification and cardiovascular activities of oxidized phospholipids. Circ Res. 2012;111(7):930946.CrossRefGoogle ScholarPubMed
Fruhwirth, GO, Moumtzi, A, Loidl, A, Ingolic, E, Hermetter, A. The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochimica et Biophysica Acta. 2006;1761(9):10601069.CrossRefGoogle ScholarPubMed
Kuosmanen, SM, Kansanen, E, Levonen, AL, et al. NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res. 2018;46(3):11241138.CrossRefGoogle ScholarPubMed
Tseng, W, Lu, JX, Tintut, Y, et al. Regulation of interleukin-6 expression in osteoblasts by oxidized phospholipids. J Lipid Res. 2010;51(5):10101016.CrossRefGoogle ScholarPubMed