Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T16:10:47.614Z Has data issue: false hasContentIssue false

Synchronized Maternal-Infant Elevations of Primate CSF CRF Concentrations in Response to Variable Foraging Demand

Published online by Cambridge University Press:  07 November 2014

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Original Research
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bennett, AJ, Lesch, KP, Heils, A, et al.Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry. 2002;7:118122.CrossRefGoogle ScholarPubMed
2.Coplan, JD, Andrews, MW, Rosenblum, LA, et al.Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc Natl Acad Sci USA. 1996;93:16191623.CrossRefGoogle ScholarPubMed
3.Coplan, JD, Smith, EL, Altemus, M, et al.Variable foraging demand rearing: sustained elevations in cisternal cerebrospinal fluid corticotropin-releasing factor concentrations in adult primates. Biol Psychiatry. 2001;50:200204.CrossRefGoogle ScholarPubMed
4.McEwen, BS. Mood disorders and allostatic load. Biol Psychiatry. 2003;54:200207.CrossRefGoogle ScholarPubMed
5.Schulkin, J, McEwen, BS, Gold, PW. Allostasis, amygdala, and anticipatory angst Neurosci Biobehav Rev. 1994;18:385396.CrossRefGoogle ScholarPubMed
6.Nemeroff, CB, Widerlov, E, Bissette, G, et al.Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984;226:13421344.CrossRefGoogle ScholarPubMed
7.Bremner, JD, Licinio, J, Darnell, A, et al.Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry. 1997;154:624629.Google ScholarPubMed
8.Commons, KG, Connolley, KR, Valentino, RJ. A neurochemically distinct dorsal raphelimbic circuit with a potential role in affective disorders. Neuropsychopharmacology. 2003;28:206215.CrossRefGoogle ScholarPubMed
9.Coplan, JD, Trost, RC, Owens, MJ, et al.Cerebrospinal fluid concentrations of somatostatin and biogenic amines in grown primates reared by mothers exposed to manipulated foraging conditions. Arch Gen Psychiatry. 1998;55:473477.CrossRefGoogle ScholarPubMed
10.Kalin, NH, Shelton, SE, Davidson, RJ. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci. 2004;24:55065515.CrossRefGoogle ScholarPubMed
11.Benes, FM, Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25:127.CrossRefGoogle ScholarPubMed
12.Altemus, M, Swedo, SE, Leonard, HL, et al.Changes in cerebrospinal fluid neurochemistry during treatment of obsessive-compulsive disorder with clomipramine. Arch Gen Psychiatry. 1994;51:794803.CrossRefGoogle ScholarPubMed
13.Coplan, JD, Smith, ELP, Arif, M, Gorman, JM, Rosenblum, LA, Altemus, M. Maternal HPA axis “inversion” response to the VFD-rearing stressor. Abstract presented at: the annual meeting of the Society of Biological Psychiatry. San Francisco, Calif; May 15–17, 2003.Google Scholar
14.Coplan, J. Magnetic resonance spectroscopy: correlates of SSRI-treated generalized Anxiety disorder; defining neural substrates of worry, IQ and early trauma and role of primate hippocampal neurogenesis. Abstract presented at: annual meeting of the Collegium Internationale Neuro-Psychopharmacologicum; Paris, France; June 20-24, 2004.Google Scholar
15.Mathew, SJ, Coplan, JD, Smith, EL, et al.Cerebrospinal fluid concentrations of biogenic amines and corticotropin-releasing factor in adolescent non-human primates as a function of the timing of adverse early rearing. Stress. 2002;5:185193.CrossRefGoogle ScholarPubMed
16.Brunson, KL, Grigoriadis, DE, Lorang, MT, Baram, TZ. Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Exp Neurol. 2002;176:7586.CrossRefGoogle ScholarPubMed
17.Yan, XX, Baram, TZ, Gerth, A, Schultz, L, Ribak, CE. Co-localization of corticotropin-releasing hormone with glutamate decarboxylase and calcium-binding proteins in infant rat neocortical interneurons. Exp Brain Res. 1998;123:334340.CrossRefGoogle ScholarPubMed
18.Chen, Y, Bender, RA, Frotscher, M, Baram, TZ. Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J Neurosci. 2001;21:71717181.CrossRefGoogle Scholar
19.Alonso, R, Griebel, G, Pavone, G, Stemmelin, J, Le Fur, G, Soubrie, P. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry. 2004;9:278–86.224.CrossRefGoogle Scholar