Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-kknlk Total loading time: 0.344 Render date: 2022-01-22T12:58:09.987Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Neuroimaging and the Neuroanatomy of Posttraumatic Stress Disorder

Published online by Cambridge University Press:  07 November 2014

Abstract

Contemporary neuroimaging methods have been used to gather initial data regarding the neural substrates of posttraumatic stress disorder (PTSD). Morphometric magnetic resonance imaging (MRI) studies have reliably shown reduced hippocampal volume in subjects with PTSD vs control cohorts. Functional imaging studies have implicated a network of brain regions in PTSD, comprising the amygdala, hippocampus, and anterior paralimbic territories (including anterior cingulate cortex), as well as Broca's area and visual cortex. Extant relevant neuroimaging data are reviewed, and a tentative heuristic neuroanatomical model of PTSD is provided. In conclusion, emerging strategies for advancement in this field are outlined.

Type
Supplement Monograph
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.Google Scholar
2.Bremner, JD, Randall, P, Scott, TM, et al.MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995;152:973981.Google ScholarPubMed
3.Aggleton, JP, ed. The Amygdala: Neurobiological Aspects of Emotion, Memory and Mental Dysfunction. New York: Wiley-Liss; 1992.Google Scholar
4.Squire, LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992;99:195231.CrossRefGoogle ScholarPubMed
5.Kim, JJ, Fanselow, MS. Modality specific retrograde amnesia of fear. Science. 1992;256:675677.CrossRefGoogle Scholar
6.Phillips, RG, LeDoux, JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274285.CrossRefGoogle ScholarPubMed
7.McNish, KA, Gewirtz, JC, Davis, M. Evidence of contextual fear after lesions of the hippocampus: a disruption of freezing but not fear-potentiated startle. J Neurosci. 1997;17:93539360.CrossRefGoogle Scholar
8.Mesulam, M-M. Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam, M-M, ed. Principles of Behavioral Neurology. Philadelphia, PA: F.A. Davis Co; 1985:170.Google Scholar
9.Devinsky, O. Contributions of anterior cingulate cortex to behavior. Brain. 1995;118:279306.CrossRefGoogle Scholar
10.Vogt, BA, Finch, DM, Olson, CR. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex. 1992;2:435443.Google ScholarPubMed
11.Myslobodsky, MS, Glicksohn, J, Singer, J, et al.Changes of brain anatomy in patients with posttraumatic stress disorder: a pilot magnetic resonance imaging study. Psychiatry Res. 1995;58:259264.CrossRefGoogle ScholarPubMed
12.Canive, J, Lewine, JD, Orrison, WW, et al.MRI reveals gross structural abnormalities in PTSD. In: Yehuda, R, McFarlane, AC, eds. Psychobiology of Posttraumatic Stress Disorder. New York: New York Academy of Sciences; 1997:512515.Google Scholar
13.Gurvits, TV, Shenton, ME, Hokama, H, et al.Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry. 1996;40:10911099.CrossRefGoogle ScholarPubMed
14.Bremner, JD, Randall, P, Vermetten, E, et al.Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse: a preliminary report. Biol Psychiatry. 1997;41:2332.CrossRefGoogle ScholarPubMed
15.Stein, MB, Koverola, C, Hanna, C, et al.Hippocampal volume in women victimized by childhood sexual abuse. Psychol Med. 1997;27:951960.CrossRefGoogle ScholarPubMed
16.Dager, SR, Steen, RG. Applications of magnetic resonance spectroscopy to the investigation of neuropsychiatric disorders. Neuropsychopharmacology. 1992;6:249266.Google ScholarPubMed
17.Schuff, N, Marmar, CR, Weiss, DS, et al.Reduced hippocampal volume and N-acetyl aspartate in posttraumatic stress disorder. In: Yehuda, R, McFarlane, AC, eds. Psychobwlogy of Posttraumatic Stress Disorder. New York: New York Academy of Sciences; 1997:516520.Google ScholarPubMed
18.Magarinos, AM, McEwen, BS, Flugge, G, et al.Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci. 1996;16:35343540.CrossRefGoogle ScholarPubMed
19.Sapolsky, RM, Uno, H, Rebert, CS, et al.Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10:28972902.CrossRefGoogle ScholarPubMed
20.Yehuda, R. Neuroendocrinology of trauma and posttraumatic stress disorder. In: Yehuda, R, ed. Psychological Trauma. Washington, DC: American Psychiatric Press; 1998:97132.Google Scholar
21.Rauch, SL, van der Kolk, BA, Fisler, RE, et al.A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch Gen Psychiatry. 1996;53:380387.CrossRefGoogle ScholarPubMed
22.Rauch, SL, Jenike, MA, Alpert, NM, et al.Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry. 1994;51:6270.CrossRefGoogle ScholarPubMed
23.Rauch, SL, Savage, CR, Alpert, NM, et al.A positron emission tomographic study of simple phobic symptom provocation. Arch Gen Psychiatry. 1995;52:2028.CrossRefGoogle ScholarPubMed
24.Reiman, EM, Raichle, ME, Robins, E, et al.Neuroanatomical correlates of a lactate-induced anxiety attack. Arch Gen Psychiatry. 1989;46:493500.CrossRefGoogle ScholarPubMed
25.Fredrikson, M, Wik, G, Annas, P, et al.Functional neuroanatomy of visually elirefd simple phobic fear: additional data and theoretical analysis. Psychophyswlogy. 1995;32:4348.CrossRefGoogle ScholarPubMed
26.Fredrikson, M, Wik, G, Greitz, T, et al.Regional cerebral blood flow during experimental fear. Psychophysiology. 1993;30:126130.CrossRefGoogle ScholarPubMed
27.Fischer, H, Wik, G, Fredrikson, M. Functional neuroanatomy of robbery re-experience: affective memories studied with PET. NeuroReport. 1996;7:20812086.CrossRefGoogle ScholarPubMed
28.Shin, LM, McNally, RJ, Kosslyn, SM, et al.A positron emission tomographic study of symptom provocation in PTSD. In: Yehuda, R, McFarlane, AC, eds. Psychobiology of Posttraumatic Stress Disorder. New York: New York Academy of Sciences; 1997:521523.Google Scholar
29.Semple, WE, Goyer, P, McCormick, R, et al.Preliminary report: brain blood flow using PET in patients with posttraumatic stress disorder and substance-abuse histories. Biol Psychiatry. 1993;34:115118.CrossRefGoogle ScholarPubMed
30.Semple, WE, Goyer, P, McCormick, R, et al.Attention and regional cerebral blood flow in posttraumatic stress disorder patients with substance abuse histories. Psychiatry Res Neuroimaging. 1996;67:1728.CrossRefGoogle ScholarPubMed
31.Nordahl, TE, Semple, WE, Gross, M, et al.Cerebral glucose metabolic differences in patients with panic disorder. Neuropsychopharmacology. 1990;3:261272.Google ScholarPubMed
32.Reiman, EM, Raichle, ME, Robins, E, et al.The application of positron emission tomography to the study of panic disorder. Am J Psychiatry. 1986;143:469477.Google Scholar
33.Shin, LM, Kosslyn, SM, McNally, RJ, et al.Visual imagery and perception in posttraumatic stress disorder: a positron emission tomographic investigation. Arch Gen Psychiatry. 1997;54:233241.CrossRefGoogle ScholarPubMed
34.Southwick, SM, Krystal, JH, Morgan, A, et al.Abnormal noradrenergic function in posttraumatic stress disorder. Arch Gen Psychiatry. 1993;50:266274.CrossRefGoogle ScholarPubMed
35.Bremner, JD, Innis, RB, Ng, CK, et al.Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54:246254.CrossRefGoogle ScholarPubMed
36.Woods, SW, Koster, K, Krystal, JK, et al.Yohimbine alters regional cerebral blood flow in panic disorder. Lancet. 1988;2:678.CrossRefGoogle ScholarPubMed
37.Benkelfat, C, Bradwejn, J, Meyer, E, et al.Functional neuroanatomy of CCK4-induced anxiety in normal healthy volunteers. Am J Psychiatry. 1995;152:11801184.Google ScholarPubMed
38.Ketter, TA, Andreason, PJ, George, MS, et al.Anterior paralimbic mediation of procaine-induced emotional and psychosensory experiences. Arch Gen Psychiatry. 1996;53:5969.CrossRefGoogle ScholarPubMed
39.Breiter, HC, Etcoff, NL, Whalen, PJ, et al.Response and habituation of the human amygdala during visual processing of facial expression. Neuron. 1996;17:875887.CrossRefGoogle ScholarPubMed
40.Cahill, L, Haier, RJ, Fallon, J, et al.Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc Natl Acad Sci USA. 1996;93:80168021.CrossRefGoogle ScholarPubMed
41.Irwin, W, Davidson, RJ, Lowe, MJ, et al.Human amyg-dala activation detected with echo-planar functional magnetic resonance imaging. NeuroReport. 1996;7:17651769.CrossRefGoogle ScholarPubMed
42.Morris, JS, Frith, CD, Perrett, DI, et al.A differential response in the human amygdala to fearful and happy facial expressions. Nature. 1996;383:812815.CrossRefGoogle ScholarPubMed
43.Morris, JS, Friston, KJ, Dolan, RJ. Neural responses to salient visual stimuli. Proc R Soc Lond B Biol Sci. 1997;264:769775.CrossRefGoogle ScholarPubMed
44.Whalen, PJ, Rauch, SL, Etcoff, NL, et al.Masked presentations of emotional facial expressions modulate amyg-dala activity without explicit knowledge. J Neurosci. 1998;18:411418.CrossRefGoogle ScholarPubMed
45.Whalen, PJ, Bush, G, McNally, R, et al.The digital emotional stroop activates anterior cingulate cortex: an fMRI study. Neuroimage. 1997;5:S121. Abstract.Google Scholar
46.Schacter, DL, Alpert, NM, Savage, CR, et al.Conscious recollection and the human hippocampal formation: evidence from positron emission tomography. Proc Natl Acad Sci USA. 1996;93:321325.CrossRefGoogle ScholarPubMed
47.Stern, CE, Corkin, S, Gonzalez, RG, et al.The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1996;93:86608665.CrossRefGoogle ScholarPubMed
74
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Neuroimaging and the Neuroanatomy of Posttraumatic Stress Disorder
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Neuroimaging and the Neuroanatomy of Posttraumatic Stress Disorder
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Neuroimaging and the Neuroanatomy of Posttraumatic Stress Disorder
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *