Skip to main content Accessibility help
Hostname: page-component-544b6db54f-rlmms Total loading time: 0.218 Render date: 2021-10-23T03:12:43.560Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Dementia and the Neurovirulence of HIV-1

Published online by Cambridge University Press:  07 November 2014


Infection with human immunodeficiency virus type 1 (HIV-1 ) leads rapidly to infection of the brain and subsequent neuropsychological impairment, including subclinical impairment, minor cognitive-motor disorder, and HIV-1–associated dementia (HAD). This article reviews HAD and the factors involved in its pathogenesis; the effectiveness of antiretroviral therapy; the prevalence of HIV-1 and subtypes; and the role of chemokines and cytokines as the capstones associated with neuropathology due to inflammation.

Feature Articles
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Resnick, L, Berger, JR, Shapshak, P, Tourtellotte, WW. Early penetration of the blood-brain-barrier by HIV. Neurology. 1988;38:914.CrossRefGoogle ScholarPubMed
2.Fujimura, RK, Bockstahler, LE, Goodkin, K, Werner, T, Brack-Werner, R, Shapshak, P. Neuropathology and virology of HIV associated dementia. Rev Med Virol. 1996;6:141150.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
3.Goodkin, K. Complications of the central and peripheral nervous systems. In: Forstein, M, ed. HIV-Refated Neuropsychiatrie Complications and Treatments: HIV/AIDS Training Curriculum. Washington, DC: American Psychiatric Association; 1995:1103.Google Scholar
4.Goodkin, K. The Neuropsychiatric and Behavioral Manifestations of HIV Infection, Section IX. Clinical Manual on HIV and AIDS: An Update. Jacksonville, Fla: Florida Medical Association; 1995:113131.Google Scholar
5.Melton, ST, Kirkwood, CK, Ghaemi, SN. Pharmacotherapy of HIV dementia. Ann Pharmacother. 1997;31:457473.CrossRefGoogle ScholarPubMed
6.Bellman, AL. HIV-1–associated CNS disease in infants and children. In: Price, RW, Perry, SW, eds. HIV, AIDS, and the Brain, New York, NY: Raven Press; 1994:289310.Google Scholar
7.Portegies, P. The Neurology of HIV-1 Infection. London, England: Meditech Media LTD; 1995.Google Scholar
8.Navia, BA, Jordan, BD, Price, RW. The AIDS dementia complex: I. clinical features. Ann Neurol. 1986;19:517524.CrossRefGoogle ScholarPubMed
9.Portegies, P. AIDS dementia complex: a review. J Acquir Immune Defic Syndr. 1994;7(suppl 2):S38S49.Google ScholarPubMed
10.American Academy of Neurology AIDS Task Force Working Group. Nomenclature and research definition for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Neurology. 1991;41:778785.CrossRefGoogle Scholar
11.Budka, H, Wiley, CA, Kleihues, P, et al.HIV-associated disease of the nervous system: review of nomenclature and proposal for neuropathology-based terminology. Brain Pathol. 1991;1:143152.CrossRefGoogle ScholarPubMed
12.Newman, SP, Lunn, S, Harrison, MJG. Do asymptomatic HIV-seropositive individuals show cognitive deficit? AIDS. 1995;9:12111220.CrossRefGoogle ScholarPubMed
13.Wilkie, F, Eisdorfer, C, Morgan, R, Loewenstein, DA, Szapocznik, J. Cognition in early human immunodeficiency virus infection. Arch Neurol. 1990;47:433440.CrossRefGoogle ScholarPubMed
14.Achim, CL, Wang, R, Miners, DK, Wiley, CA. Brain viral burden in HIV infection. J Neuropathol Exp Neurol. 1994;53:284294.CrossRefGoogle ScholarPubMed
15.Masliah, E, Ge, N, Achim, CL, DeTeresa, R, Wiley, CA. Patterns of neurodegeneration in HIV encephalitis. Journal of NeuroAIDS. 1996;1:161173.Google ScholarPubMed
16.Petito, CK, Cho, E-S, Lemann, W, Navia, BA, Price, RW. Neuropathology of acquired immunodeficiency syndrome (AIDS): autopsy review. J Neuropathol Exp Neurol. 1986;45:635646.CrossRefGoogle ScholarPubMed
17.Shapshak, P, Yoshioka, M, Sun, NCJ, Schiller, P. The use of combined in situ hybridization and immune-cytochemistry to identify HIV-1 infected cells in brain tissue. Mod Pathol. 1992;5:649654.Google Scholar
18.Yoshioka, M, Shapshak, P, Svenningsson, A, Nelson, S, Resnick, L, Tate, L. Ferritin immunore-activity in microglial nodules in AIDS brain. Acta Neuropathol (Berl). 1992;84:297306.Google Scholar
19.Wiley, CA, Soontornniyomkij, V, Radhakrishnan, L, et al.Distribution of brain HIV load in AIDS. Brain Pathol. 1998;8:277284.CrossRefGoogle Scholar
20.Glass, JD, Fedor, H, Wesselingh, SL, McArthur, JC. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol. 1995;38:755762.CrossRefGoogle ScholarPubMed
21.Wiley, CA, Achim, C. Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome. Ann Neurol. 1994;36:673676.CrossRefGoogle ScholarPubMed
22.Subbiah, P, Mouton, P, Fedor, H, McArthur, JC, Glass, JD. Stereological analysis of cerebral atrophy in human immunodeficiency virus-associated dementia. J Neuropathol Exp Neurol. 1996;55:10321037.CrossRefGoogle ScholarPubMed
23.Dickson, DW, Lee, SC, Hatch, W, Mattiace, LA, Brosnan, CF, Lyman, WD. Macrophages and microglia in HIV-related CNS neuropathology. In: Price, RW, Perry, SW, eds. HIV AIDS, and the Brain. New York, NY: Raven Press; 1994:99118.Google Scholar
24.Delgado, S, Shapshak, P, Stewart, RV, de la Vega, PR, Benjamin, S, Bradley, W. Heterogeneity of macrophages in the peripheral nervous system in HIV-1 infected individuals. Journal of NeuroAIDS. 1998;2:7997.Google Scholar
25.Shapshak, P, Stewart, RV, de la Vega, PR, et al.Brain macrophage surface marker expression with HIV-1 infection and drug abuse: a preliminary study. Journal of NeuroAIDS. In press.Google Scholar
26.Shapshak, P, Crandall, KA, Xin, KQ, et al.HIV-1 neuropathogenesis and abused drugs: current views, problems, and solutions. In: Sharp, B, Eisenstein, T, Madden, J, Friedman, H, eds. Advances in Experimental Medicine and Biology. Baton Rouge,: CRC Press; 1996; vol 374:171186.Google Scholar
27.Shapshak, P, Segal, DM, Crandall, K, et al.Independent evolution of HIV-1 in different brain regions. AIDS Res Hum Retroviruses. 1999;15:811820.CrossRefGoogle ScholarPubMed
28.Fujimura, RK, Goodkin, K, Petito, CK, et al.HIV-1 proviral DNA load across neuroanatomic regions of individuals with evidence for HIV-1-associated dementia. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;16:146152.CrossRefGoogle ScholarPubMed
29.Cunningham, AL, Naif, H, Saksena, N, et al.HIV infection of macrophages and pathogenesis of AIDS dementia complex: interaction of the host cell and viral genotype. J Leukoc Biol. 1997;62:117125.CrossRefGoogle ScholarPubMed
30.Chang, J, Jozwiak, R, Wang, B, et al.Unique HIV type 1 V3 region sequences derived from six different regions of brain: region-specific evolution within host-determined quasispecies. AIDS Res Hum Retroviruses. 1998;14:2530.CrossRefGoogle ScholarPubMed
31.Qureshi, AI, Hanson, DL, Jones, JL, Janssen, RS. Estimation of the temporal probability of human immunodeficiency virus (HIV) dementia risk stratification for HIV-infected persons. Neurology. 1998;50:392397.CrossRefGoogle ScholarPubMed
32.McArthur, JC, McClernon, DR, Cronin, MF, et al.Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol. 1997;42:689698.CrossRefGoogle ScholarPubMed
33.Furtado, MR, Kingsley, LA, Wolinsky, SM. Changes in the viral mRNA expression pattern correlate with a rapid rate of CD4+ T-cell number decline in human immunodeficiency virus type 1-infected individuals. J Virol. 1995;69:20922100.Google ScholarPubMed
34.Michael, NL, Vahey, M, Burke, DS, Redfield, RR. Viral DNA and mRNA expression correlate with the stage of human immunodeficiency virus (HIV) type 1 infection in humans: evidence for viral replication in all stages of HIV disease. J Virol. 1992;66:310316.Google ScholarPubMed
35.Saksela, K, Stevens, C, Rubinstein, P, Baltimore, D. Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the numbers of CD4+ lymphocytes. Proc Natl Acad Sci U S A. 1994;91:11041108.CrossRefGoogle ScholarPubMed
36.Lipton, SA, Gendelman, HE. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med. 1995;332:934940.CrossRefGoogle ScholarPubMed
37.Bagasra, O, Lavi, E, Bobroski, L, et al.Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS. 1996;10:573585.CrossRefGoogle ScholarPubMed
38.Nuovo, GJ, Gallery, F, MacConnell, P, Braun, A. In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis factor-alpha RNA in the central nervous system. Am J Pathol. 1994;144:659665.Google ScholarPubMed
39.Takahashi, K, Wesselingh, SL, Griffin, DE, McArthur, JC, Johnson, RT, Glass, JD. Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocyto-chemistry. Ann Neurol. 1996;39:705711.CrossRefGoogle Scholar
40.Blumberg, BM, Gelbard, HA, Epstein, LG. HIV-1 infection of the developing nervous system: central role of astrocytes in pathogenesis. Virus Res. 1994;32:253267.CrossRefGoogle ScholarPubMed
41.Saito, Y, Sharer, LR, Epstein, LG, et al.Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology. 1994;44:474481.CrossRefGoogle ScholarPubMed
42.Tornatore, C, Chandra, R, Berger, JR, Major, EO. HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology. 1994;44:481487.CrossRefGoogle ScholarPubMed
43.Tornatore, C, Meyers, K, Atwood, W, Conant, K, Major, EO. Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes. J Virol. 1994;68:93102.Google ScholarPubMed
44.Patton, HK, Benveniste, EN, Benos, DJ. Astrocytes and the AIDS dementia complex. Journal of NeuroAIDS. 1996;1:111131.Google ScholarPubMed
45.Brack-Werner, R, Kleinschmidt, A, Ludvigsen, A, et al.Infection of human brain cells by HIV-1: restricted virus production in chronically infected human glial cell lines. AIDS. 1992;6:273285.CrossRefGoogle ScholarPubMed
46.Neumann, M, Felber, BK, Kleinschmidt, A, et al.Restriction of human immunodeficiency virus type 1 production in a human astrocytoma cell line is associated with a cellular block in rev function. J Virol. 1995;69:21592167.Google Scholar
47.Kohleisen, B, Neumann, M, Herrmann, R, et al.Cellular localization of nef expressed in persistently HIV-1-infected low-producer astrocytes. AIDS. 1992;6:14271436.CrossRefGoogle ScholarPubMed
48.Wesselingh, SL, Power, C, Glass, JD, et al.Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol. 1993;33:576582.CrossRefGoogle ScholarPubMed
49.Mabrouk, K, Van Rietschoten, J, Vives, E, Darbon, H, Rochat, H, Sabatier, JM. Lethal neurotoxicity in mice of the basic domains of HIV and SIV Rev proteins: study of these regions by circular dichroism. FEBS Lett. 1991;289:1317.CrossRefGoogle ScholarPubMed
50.Sabatier, JM, Vives, E, Mabrouk, K, et al.Evidence for neurotoxic activity of tat from human immunodeficiency virus type 1. J Virol. 1991;65:961967.Google ScholarPubMed
51.Werner, T, Ferroni, S, Saermark, T, et al.HIV-1 nef protein exhibits structural and functional similarity to scorpion peptides interacting with K+ channels. AIDS. 1991;5:13011308.CrossRefGoogle ScholarPubMed
52.Essex, ME. Origin of AIDS. In: de Vita, VT Jr, Hellman, S, Rosenberg, SA, eds. AIDS: Biology, Diagnosis, Treatment, and Prevention. 4th ed. Philadelphia, Pa: Lippincott-Raven Publishers; 1997:314.Google Scholar
53.Gottlieb, MS, Schroff, R, Schanker, HM, et al.Pneumocystis carinii pnuemonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med. 1981;305:14251431.CrossRefGoogle Scholar
54.Huet, T, Cheynier, R, Meyerhans, A, Roelants, G, Wain-Hobson, S. Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature. 1990;345:356359.CrossRefGoogle ScholarPubMed
55.Gao, F, Bailes, E, Robertson, DL, et al.Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1991;397:436441.CrossRefGoogle Scholar
56.McCutchan, FE. Global diversity of HIV. In: Crandall, KA, ed. The Evolution of HIV. Baltimore, Md: Johns Hopkins University Press; 1999:41101.Google Scholar
57.Folks, TM. Chimpanzee as original source for HIV. [commentary]. JAMA. 2000;283:310.CrossRefGoogle ScholarPubMed
58.Crandall, KA. Multiple interspecies transmission of human and simian T-cell leukemia/lymphoma virus type 1 sequences. Mol Biol Evol. 1996;13:115131.CrossRefGoogle Scholar
59.Simon, F, Mauclere, P, Roques, P, et al.Identification of a new HIV type 1 distinct from group M and group O. Nat Med 1998;4:10321037.CrossRefGoogle Scholar
60.Ou, CY, Takebe, Y, Luo, CC, et al.Wide distribution of two sub-types of HIV-1 in Thailand. AIDS Res Hum Retroviruses. 1992;8:14711472.Google Scholar
61.Rayfield, MA, Sullivan, P, Bandea, CI, et al.HIV-1 group O virus identified for the first time in the US. Emerg Infect Dis. 1996;2:209212.CrossRefGoogle Scholar
62.Flores, I, Pieniazek, D, Moran, N, et al.HIV-1 subtype F in single and dual infections in Puerto Rico: a potential sentinel site for monitoring novel genetic HIV variants in North America. Emerg Infect Dis. 1999;5:481483.CrossRefGoogle ScholarPubMed
63.D'Aquila, R, Walker, B. Exploring the benefits and limits of HAART. JAMA. 1999;282:16681669.CrossRefGoogle Scholar
64.Gendelman, HE, Zheng, J, Coulter, CL, et al.Suppression of inflammatory neurotoxins by highly active antiretroviral therapy. J Infect Dis. 1998;178:10001007.CrossRefGoogle ScholarPubMed
65.Dornadula, G, Zhang, H, VanUitert, B, et al.Residual HIV-1 RNA in blood plasma of patients taking suppressive HAART. JAMA. 1999;282:16271632.CrossRefGoogle Scholar
66.Kravcik, S, Gallicaono, K, Roth, V, et al.CSF HIV RNA and drug levels with combination ritonavir and saquinavir. J AIDS Hum Retroviruses. 1999;21:371375.Google ScholarPubMed
67.Hecht, FM, Grant, RM, Petropoulis, CJ, et al.Sexual transmission of an HIV-1 variant resistant to multiple reverse transcriptase and protease inhibitors. N Engl J Med. 1998;339:307311.CrossRefGoogle ScholarPubMed
68.Dore, GJ, Correll, PK, Li, Y, Kaldor, JM, Cooper, DA, Brew, BJ. Changes to AIDS dementia complex in the era of HAART. AIDS. 1999;13:12491253.CrossRefGoogle Scholar
69.Edlin, BR, Irwin, KL, Faruque, S, et al.Intersecting epidemics: crack cocaine use and HIV infection among inner-city young adults. Multicenter Crack Cocaine and HIV Infection Study Team. N Engl J Med 1994;331:14221427.CrossRefGoogle ScholarPubMed
70.Clements, ML. Clinical trials of HIV vaccines. In: de Vita, VT Jr, Hellman, S, Rosenberg, SA, eds. AIDS: Biology, Diagnosis, Treatment, and Prevention. 4th ed. Philadelphia, Pa: Lippincott-Raven Publishers;1997:617626.Google Scholar
71.Petito, CK, Roberts, B. Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol. 1995;146:11211130.Google ScholarPubMed
72.Epstein, LG, Kuiken, C, Blumberg, BM, et al.HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. Virology. 1991;180:583590.CrossRefGoogle ScholarPubMed
73.Power, C, McArthur, JC, Johnson, RT, et al.Demented and nondemented patients with AIDS differ in brain-derived human immunodeficiency virus type 1 envelope sequences. J Virol. 1994;68:46434649.Google ScholarPubMed
74.Korber, BTM, Kunstman, KJ, Patterson, BK, et al.Genetic differences between blood- and brain-derived viral sequences from HIV-1-infected patients: evidence for conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol. 1994;68:74677481.Google Scholar
75.Kuiken, CL, Goudsmit, J, Weiller, GF, et al.Differences in human immunodeficiency virus type 1 V3 sequences from patients with and without AIDS dementia complex. J Gen Virol. 1995;76:175180.CrossRefGoogle ScholarPubMed
76.Reddy, RT, Achim, CL, Sirko, DA, et al, and the HIV Neurobehavioral Research Group. Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis. AIDS Res Hum Retroviruses. 1996;12:477482.CrossRefGoogle Scholar
77.Di Stefano, M, Wilt, S, Fray, F, et al.HIV Type 1 V3 sequences and the development of dementia during AIDS. AIDS Res Hum Retroviruses. 1996;12:471476.CrossRefGoogle ScholarPubMed
78.Jurado, A, Rahimi-Moghaddem, P, Bar-Jurado, S, et al.Markers on HIV-1 gpl20 C2–V3, region associated with the expression or absence of cognitive motor complex in HIV/AID. Journal of NeuroAIDS. 1999;2:1528.Google Scholar
79.Sankale, JL, De La Tour, RS, Marlink, RG, et al.Distinct quasi-species in the blood and the brain of an HIV-2-infected individual. Virology. 1996;226:418423.CrossRefGoogle ScholarPubMed
80.Petito, CK, Keraz-Kwiatecki, AP, Gendelman, HE, et al.Neuronal injury in HIV infection. J Neurovirol. 1999;5:327341.CrossRefGoogle ScholarPubMed
81.Yoshioka, M, Bradley, WG, Shapshak, P, et al.Role of immune activation and cytokine expression in HIV-1-associated neurologic diseases. Adv Neuroimmunol. 1995;5:335358.CrossRefGoogle ScholarPubMed
82.Xiao, BG, Link, H. Is there a balance between microglia and astrocytes in regulating Th1/Th2-cell responses and neuropathologies? Trends in Immunol. 1999;20:477479.CrossRefGoogle Scholar
83.Gartner, S. HIV infection and dementia. Science. 2000;287:602604.CrossRefGoogle ScholarPubMed
84.Karpus, WJ. Chemokine regulation of inflammatory-mediated nervous system diseases. J Neurovirol. 1999;5:12.CrossRefGoogle ScholarPubMed
85.Hesselgesser, J, Horuk, R. Chemokine and chemokine receptor expression in the CNS. J Neurovirol. 1999;5:1326.CrossRefGoogle Scholar
86.Strieter, RM, Polverini, PJ, Kunkel, SL, et al.The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270:2734827357.CrossRefGoogle ScholarPubMed
87.Ransohoff, RM, Glabinski, SA, Tani, M. Chemokines in immune-mediated inflammation in the CNS. Cytokine Growth Factor Rev. 1996;7:3546.CrossRefGoogle Scholar
88.Glabinski, AR, Tani, M, Strieter, RM, Tuohy, VK, Ransohoff, RM. Synchronous synthesis of alpha-and beta-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am J Pathol. 1997;150:617630.Google ScholarPubMed
89.Hulkower, K, Brosnan, CF, Aquino, DA, et al.Expression of CSF-1, c-fms, and MCP-1 in the CNS of rats with EAE. J Immunol. 1993;150:25252533.Google Scholar
90.Glabinski, AR, Ransohoff, RM. Chemokines and chemokine receptors in CNS pathology. J Neurovirol. 1999;5:312.CrossRefGoogle ScholarPubMed
91.Conant, K, Garzino-Demo, A, Nath, A, et al.Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A. 1998;95:31173121.CrossRefGoogle ScholarPubMed
92.Hayashi, M, Luo, Y, Laning, J, Srieter, RM, Dorf, ME. Production of and function of MCP-1 and other b-chemokines in murine glial cells. J Neuroimmunol. 1995;60:143150.CrossRefGoogle Scholar
93.Peterson, PK, Hu, S, Salak-Johnson, J, Molitor, TW, Chao, CC. Differential production of migratory response to b-chemokines by human microglia and astrocytes. J Infect Dis. 1997;175:478481.CrossRefGoogle Scholar
94.Zhou, ZH, Chaturvedi, P, Han, YL, et al.IFN-g induction of the human monocyte chemoattractant protein (hMCP)-l gene in astrocytoma cells: functional interaction between an IFN-γ–activated site and a GC-rich element. J Immunol. 1998;160:39083916.Google Scholar
95.Cocchi, F, De Vico, AL, Garzino-Demo, A, Arya, SK, Gallo, RC, Lusso, P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270:18111815.CrossRefGoogle ScholarPubMed
96.McNicholl, JM, Smith, DK, Qari, SH, Hodge, T. Host genes and HIV: the role of the chemokine receptor gene CCR5 and its allele. Emerg Infect Dis. 1997;3:261271.CrossRefGoogle ScholarPubMed
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dementia and the Neurovirulence of HIV-1
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dementia and the Neurovirulence of HIV-1
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dementia and the Neurovirulence of HIV-1
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *