Hostname: page-component-788cddb947-jbjwg Total loading time: 0 Render date: 2024-10-16T02:21:15.607Z Has data issue: false hasContentIssue false

Thickness and Surface Characteristics of Colloidal 2:1 Aluminosilicates Using an Indirect Fourier Transform of Small-Angle X-Ray Scattering Data

Published online by Cambridge University Press:  28 February 2024

Chao Shang
Affiliation:
Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, USA
James A. Rice
Affiliation:
Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota 57007, USA
Jar-Shyong Lin
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An indirect Fourier transformation applied to small-angle X-ray scattering data has been used to determine the thickness and surface properties of two common clay minerals. For an illite system, the particle density distribution function (PDDF) generated by the analysis gave a correct description of particle geometry, and the calculated electron density profile was in accordance with the theoretical electron density distribution for this mineral. This approach provides the opportunity to determine the thickness of fundamental particles of illite while avoiding the difficulties encountered in other methods. Both the PDDF and the electron density profile accurately predict the thickness of Na-montmorillonite layers, and the results suggest that an electron inhomogeneity exists at the interface of this mineral.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Beckett, R. Murphy, D. Tadjiki, S. Chittleborough, D.J. and Giddings, J.C., 1997 Determination of thickness, aspect ratio and size distributions for platy particles using sedimentation field-flow fractionation and electron microscopy Colloids and Surfaces 120 1726 10.1016/S0927-7757(96)03716-8.CrossRefGoogle Scholar
Drits, V.A. Środoń, J. and Eberl, D.D., 1997 XRD measurement of mean thickness of illite/smectite; reappraisal of the Kübier index and the Scherrer equation Clays and Clay Minerals 45 461475 10.1346/CCMN.1997.0450315.CrossRefGoogle Scholar
Drits, V.A. Eberl, D.D. and Środoń, J., 1998 XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique Clays and Clay Minerals 46 3850 10.1346/CCMN.1998.0460105.CrossRefGoogle Scholar
Glatter, O., 1977 Data evaluation in small angle scattering: calculation of the radial electron density distribution by means of indirect Fourier transformation Acta Physica Austriaca 47 83102.Google Scholar
Glatter, O., 1980 Determination of particle-size distribution functions from small-angle scattering data by means of the indirect transformation method Journal of Applied Crystallography 13 711 10.1107/S0021889880011429.CrossRefGoogle Scholar
Glatter, O., Glatter, O. and Kratky, O., 1982 Data treatment and Interpretation Small-Angle X-Ray Scattering 119196.Google Scholar
Glatter, O., 1991 Scattering studies on colloids of biological interest (amphiphilic systems) Progress in Colloid and Polymer Science 84 4654 10.1007/BFb0115932.CrossRefGoogle Scholar
Glatter, O. and Brumberger, H., 1995 Modern methods of data analysis in small-angle scattering and light scattering Modern Aspects of Small-Angle Scattering 107180 10.1007/978-94-015-8457-9_4.CrossRefGoogle Scholar
Glatter, O. Strey, R. Schubert, K.V. and Kaler, E.W., 1996 Small angle scattering applied to microemulsions Berichte. Bunsengesellschaft fuer Physkalische Chemie 100 323335 10.1002/bbpc.19961000319.CrossRefGoogle Scholar
Guinier, A. and Fournet, G., 1955 Small Angle Scattering of X-rays. J. Wiley & Sons .Google Scholar
Hight, R.J. Jr. Higdon, W.T. and Schmidt, P.W., 1960 Small angle X-ray scattering study of sodium montmonrillonite clay suspensions Journal of Chemical Physics 33 16561661 10.1063/1.1731478.CrossRefGoogle Scholar
Hight, R.J. Jr. Higdon, W.T. Darley, H.C. and Schmidt, P.W., 1962 Small angle x-ray scattering from montmorillonite clay suspensions. II Journal of Chemical Physics 37 502510 10.1063/1.1701365.CrossRefGoogle Scholar
Hower, J. and Mowatt, T.C., 1966 The mineralogy of illites and mixed-layer illite/montmorillonites American Mineralogist 51 825855.Google Scholar
Iampietro, D.J. Brasher, L.L. Kaler, E.W. Stradner, A. and Glatter, O., 1998 Direct analysis of SANS and SAXS measurements of cationic surfactant mixtures by Fourier transformation Journal of Physical Chemistry B 102 31053113 10.1021/jp973326b.CrossRefGoogle Scholar
Martin, R.T., 1962 Adsorbed water on clay: a review Clays and Clay Minerals 9 2870 10.1346/CCMN.1960.0090104.CrossRefGoogle Scholar
Morvan, M. Espinat, D. Lambard, J. and Zemb, T.h., 1994 Ultrasmali- and small-angle X-ray scattering of smectite clay suspensions Colloids and Surfaces A 82 193203 10.1016/0927-7757(93)02656-Y.CrossRefGoogle Scholar
Müller, K. and Glatter, O., 1982 Practical aspects to the use of indirect Fourier transformation methods Makromolekulare Chemie 183 465479 10.1002/macp.1982.021830216.CrossRefGoogle Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., 1984 Interstratified clays as fundamental particles Science 225 923925 10.1126/science.225.4665.923.CrossRefGoogle ScholarPubMed
Pignon, F. Magnin, A. Piau, J.M. Cabane, B. Lindner, P. and Diat, O., 1997 Yield stress thixotropic clay suspension: Investigations of structure by light, neutron, and X-ray scattering Physical Review E 56 32813289 10.1103/PhysRevE.56.3281.CrossRefGoogle Scholar
Pilz, I., Glatter, O. and Kratky, O., 1982 Proteins Small-Angle X-ray Scattering 239293.Google Scholar
Porod, G., Glatter, O. and Kratky, O., 1982 General theory Small-Angle X-ray Scattering 1751.Google Scholar
Rich, C.I. Barnhisel, R.I., Dixon, J.B. and Weed, S.B., 1977 Preparation of clay samples for X-ray diffraction analysis Minerals in Soil Environments 797808.Google Scholar
Saunders, J. M. Goodwin, J. W. Richardson, R. M. and Vincent, B., 1999 A small-angle X-ray scattering study of the structure of aqueous Laponite dispersions Journal of Physical Chemistry B 103 92119218 10.1021/jp9907185.CrossRefGoogle Scholar
Schmidt, P. W. and Brumberger, H., 1995 Some fundamental concepts and techniques useful in small-angle scattering studies of disordered solids Modern Aspects of Small-Angle Scattering 156.CrossRefGoogle Scholar
Środoń, J. Andreolli, C. Elsass, F. and Robert, M., 1990 Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock Clays and Clay Minerals 38 373379 10.1346/CCMN.1990.0380406.CrossRefGoogle Scholar
Środoń, J. Elsass, F. McHardy, W. J. and Morgan, D. J., 1992 Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158 10.1180/claymin.1992.027.2.01.CrossRefGoogle Scholar
Strey, R. Glatter, O. Schubert, K. V. and Kaler, E., 1996 Small-angle neutron scattering of D2O-C12E5 mixtures and microemulsions with n-octane: Direct analysis by Fourier transformation Journal of Chemical Physics 105 11751188 10.1063/1.471960.CrossRefGoogle Scholar
Taylor, T. R. and Schmidt, P. W., 1969 Interparticle potential energies in Na-montmorillonite clay suspensions Clays and Clay Minerals 17 7782 10.1346/CCMN.1969.0170205.CrossRefGoogle Scholar
van Olphen, H., 1963 An Introduction to Clay Colloid Chemistry. .CrossRefGoogle Scholar
van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and Non-metallic Minerals. .Google Scholar
Wignall, G. D. Lin, J. S. and Spooner, S., 1990 The reduction of parasitic scattering in small-angle X-ray scattering by three pinhole collimating system Journal of Applied Crystallography 23 241246 10.1107/S0021889890001984.CrossRefGoogle Scholar