Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-11T23:12:38.351Z Has data issue: false hasContentIssue false

Preferred Orientation Patterns of Phyllosilicates in Surface Clays

Published online by Cambridge University Press:  01 January 2024

H.-R. Wenk*
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, California, USA
R. Vasin
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, California, USA Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
*
*E-mail address of corresponding author: wenk@berkeley.edu

Abstract

The alignment of phyllosilicates in clays has received a lot of attention because it is a major cause of seismic anisotropy in the Earth’s crust. Thus far, all attention has been on shales where the orientation pattern has been attributed to compaction and observed to increase with burial depth and diagenetic processes. Here, for the first time, the same methods that were developed to quantify shale preferred orientation were applied to clays forming in surface environments, a seasonal streambed in Death Valley, California; a mudpool from mud volcanoes in Imperial Valley, California, close to the Salton Sea; and a glacial lake from Val Albigna in the Swiss Alps. Preferred orientation was analyzed quantitatively with high-energy synchrotron X-ray diffraction. All three samples showed strong alignment of phyllosilicates with (001) pole figure maxima 2–4 multiples of a random distribution, comparable to shales, and indicating that significant preferred orientation can be produced at surface conditions. The original alignment during sedimentation may be an important factor for the final microstructure in many shales.

Type
Article
Copyright
Copyright © Clay Minerals Society 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acker, J.G. and Bricker, O.P., 1992 The influence of PH on biotite dissolution and alteration kinetics at low temperature Geochimica and Cosmochimica Acta 56 30733092.CrossRefGoogle Scholar
Allan, A.M. Clark, A.C. Vanorio, T. Kanitpanyacharoen, W. and Wenk, H.-R., 2016 On the evolution of the elastic properties of organic-rich shale upon pyrolysis-induced thermal maturation Geophysics 81 D271D289.CrossRefGoogle Scholar
Almquist, B.S.G. and Mainprice, D., 2017 Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure Reviews of Geophysics 55 367433.CrossRefGoogle Scholar
Antao, S.M. Hassan, I. Wang, J. Lee, P.L. and Toby, B.H., 2008 State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite The Canadian Mineralogist 46 15011509.CrossRefGoogle Scholar
Aplin, A.C. Larter, S.R., Boult, P. and Kaldi, J., 2005 Fluid flow, pore pressure, wettability and leakage in mudstone cap rocks Evaluating Fault and Cap Rock Seals Tulsa, Oklahoma, USA American Association of Petroleum Geologists 112.Google Scholar
Aplin, A.C. Matenaar, I.F. McCarty, D.K. and van der Pluijm, B.A., 2006 Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones Clays and Clay Minerals 54 500514.CrossRefGoogle Scholar
Ardekani, M.N. Costa, P. Breugem, W.P. and Brandt, L., 2016 Numerical study of the sedimentation of spheroidal particles International Journal of Multiphase Flow 87 1634.CrossRefGoogle Scholar
Bennett, R.H. O’Brien, N.R. Hulbert, H., Bennett, R.H. Bryant, W.R. and Hulbert, M.H., 1991 Determinants of clay and shale microfabric signatures: Processes and mechanisms Microstructure of Fine-Grained Sediments Berlin Springer Verlag 533.CrossRefGoogle Scholar
Bish, D.L. and Von Dreele, R.B., 1989 Rietveld refinement of non-hydrogen atomic positions in kaolinite Clays and Clay Minerals 37 289296.CrossRefGoogle Scholar
Blatt, H. and Schultz, D.J., 1976 Size distribution of quartz in mudrocks Sedimentology 23 857–66.CrossRefGoogle Scholar
Bossart, P. and Thury, M., 2007 Research in the Mont Terri Rock Laboratory: Quo vadis? Physics and Chemistry of the Earth 32 1931.CrossRefGoogle Scholar
Brigatti, M.F. and Davoli, P., 1990 Crystal-structure refinement of 1M plutonic biotites American Mineralogist 75 305313.Google Scholar
Buatier, M.D. Chauvet, A. Kanitpanyacharoen, W. Wenk, R. Ritz, J.F. and Jolivet, M., 2012 Origin and behavior of clay minerals in the Bogd fault gouge, Mongolia Journal of Structural Geology 34 7790.CrossRefGoogle Scholar
Chadwick, R.A. Zweigel, P. Gregersen, U. Kirby, G.A. Holloway, S. and Johannessen, P.N., 2004 Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea Energy 29 13711381.CrossRefGoogle Scholar
Cody, R.D. and Thompson, G.L., 1976 Quantitative X-ray powder diffraction analyses of clays using an orienting internal standard and pressed disks of bulk shale samples Clays and Clay Minerals 24 224231.CrossRefGoogle Scholar
Curtis, C.D. Lipshie, S.R. Oertel, G. and Pearson, M.J., 1980 Clay orientation in some Upper Carboniferous mudrocks, its relationship to quartz content and some inferences about fissility, porosity and compactional history Sedimentology 27 333339.CrossRefGoogle Scholar
Day-Stirrat, R.J. Aplin, A.C. Środoń, J. and van der Pluijm, B.A., 2008 Diagenetic reorientation of hyllosilicate minerals in Paleogene mudstones of the Podhale Basin, southern Poland Clays and Clay Minerals 56 100111.CrossRefGoogle Scholar
De la Calle, C. Pezerat, H. and Gasperin, M., 1977 Problèmes d’ordre-désordre dans les vermiculites structure du mineral calcique hydraté a 2 couches Journal de Physique 38C7 128133.Google Scholar
Downs, R.T. Hazen, R.M. and Finger, L.W., 1994 The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al-Si ordering American Mineralogist 79 10421052.Google Scholar
Dræge, A. Jakobsen, M. and Johansen, T.A., 2006 Rock physics modelling of shale diagenesis Petroleum Geoscience 12 4957.CrossRefGoogle Scholar
Ebrahimi, D. Pellenq, RJ-M and Whittle, A.J., 2012 Nanoscale elastic properties of montmorillonite upon water adsorption Langmuir 28 1685516863.CrossRefGoogle ScholarPubMed
Gatta, G.D. Nestola, F. and Ballaran, T.B., 2006 Elastic behavior, phase transition, and pressure induced structural evolution of analcime American Mineralogist 91 568578.CrossRefGoogle Scholar
Gipson, M., 1966 A study of the relations with depth, porosity and clay-mineral orientation in Pennsylvanian Shales Journal of Sedimentary Petrology 36 888903.Google Scholar
Gournis, D. Lappas, A. Karakassides, M.A. Tobbens, D. and Moukarika, A., 2008 A neutron diffraction study of alkali cation migration in montmorillonites Physics and Chemistry of Minerals 35 4958.CrossRefGoogle Scholar
Gualtieri, A.F., 2000 Accuracy of XRPD QPA using the combined Rietveld-RIR method Journal of Applied Crystallography 33 267278.CrossRefGoogle Scholar
Haerinck, T. Wenk, H.-R. Debacker, T.N. and Sintubin, M., 2015 Preferred mineral orientation of a chloritoid-bearing slate in relation to its magnetic fabric Journal of Structural Geology 71 125135.CrossRefGoogle Scholar
Helgeson, H.C., 1968 Geological and thermodynamic characteristics of the Salton Sea geothermal system American Journal of Science 266 129166.CrossRefGoogle Scholar
Ho, N.-C. Peacor, D.R. and van der Pluijm, B.A., 1999 Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition Clays and Clay Minerals 47 495504.Google Scholar
Hornby, B.E., 1998 Experimental laboratory determination of the dynamic elastic properties of wet, drained shales Journal of Geophysical Research 103 2994529964.CrossRefGoogle Scholar
Janssen, C. Kanitpanyacharoen, W. Wenk, H.-R. Wirth, R. Morales, L. Rybacki, E. Kienast, M. and Dresen, G., 2012 Clay fabrics in SAFOD core samples Journal of Structural Geology 43 118127.CrossRefGoogle Scholar
Janssen, C. Wirth, R. Wenk, H.-R. Morales, L. Naumann, R. Kienast, M. Song, S.R. and Dresen, G., 2014 Faulting processes in active faults — evidence from TCDP and SAFOD drill core samples Journal of Structural Geology 65 100116.CrossRefGoogle Scholar
Janssen, C. Wenk, H.-R. Wirth, R. Morales, L. Kemnitz, H. Sulem, J. and Dresen, G., 2016 Microstructures and their implications for faulting processes — insights from DGLab core samples from the Gulf of Corinth Journal of Structural Geology 86 6274.CrossRefGoogle Scholar
Johnston, J.E. and Christensen, N.I., 1995 Seismic anisotropy of shales Journal of Geophysical Research B 100 59916003.CrossRefGoogle Scholar
Kanitpanyacharoen, W. Wenk, H.-R. Kets, F. Lehr, B.C. and Wirth, R., 2011 Texture and anisotropy analysis of Qusaiba shales Geophysical Prospecting 59 536556.CrossRefGoogle Scholar
Kanitpanyacharoen, W. Kets, F.B. Wenk, H.-R. and Wirth, R., 2012 Preferred orientation, microstructures and porosity analyses of Posidonia shales Clays and Clay Minerals 60 315329.CrossRefGoogle Scholar
Kanitpanyacharoen, W. Vasin, R. Dewhurst, D. and Wenk, H.-R., 2015 Linking preferred orientations to elastic anisotropy in Muderong Shale, Australia Geophysics 80 C1C19.CrossRefGoogle Scholar
Lonardelli, I. Wenk, H.-R. and Ren, Y., 2007 Preferred orientation and elastic anisotropy in shales Geophysics 72 D33D40.CrossRefGoogle Scholar
Lutterotti, L. Voltolini, M. Wenk, H.-R. Bandyopadhyay, K. and Vanorio, T., 2010 Texture analysis of turbostratically disordered Ca-montmorillonite American Mineralogist 95 98103.CrossRefGoogle Scholar
Lutterotti, L. Vasin, R. and Wenk, H.-R., 2014 Rietveld texture analysis from synchrotron diffraction images I. Calibration and basic analysis. Powder Diffraction 29 7684.CrossRefGoogle Scholar
Mancini, F. Sillanpaa, R. Marshall, B. and Papunen, H., 1996 Magnesian hornblende from a metamorphosed ultramafic body in southwestern Finland: crystal chemistry and petrological implications The Canadian Mineralogist 34 835844.Google Scholar
Markgraf, S.A. and Reeder, R.J., 1985 High-temperature structure refinements of calcite and magnesite American Mineralogist 70 590600.Google Scholar
Matthies, S., 2002 20 years WIMV, history, experience and contemporary developments Materials Science Forum 408–412 95100.CrossRefGoogle Scholar
Matthies, S. and Vinel, G.W., 1982 On the reproduction of the orientation distribution function of textured samples from reduced pole figures using the concept of conditional ghost correction Physica Status Solidi B112 K111K114.Google Scholar
Matthies, S. and Wenk, H.-R., 2009 Transformations for monoclinic crystal symmetry in texture analysis Journal of Applied Crystallography 42 564571.CrossRefGoogle Scholar
Mazo, M.A. Manevitch, L.I. Gusarova, E.B. Shamaev, M.Y. Berlin, A.A. Balabaev, N.K. and Rutledge, G.C., 2008 Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal II. Hydrated montmorillonite crystal. Journal of Physical Chemistry C 112 1705617062.Google ScholarPubMed
Moon, C.F. Hurst, C.W., Stow, D.A.V. and Piper, D.J.W., 1984 Fabric of muds and shales: an overview Fine-Grained Sediments: Deep-Water Processes and Facies 579594.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C. Jr., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd edition Oxford, UK Oxford University Press 378.Google Scholar
O’Brien, N.R., 1970 The fabric of shale — an electron microscope study Sedimentology 15 229246.CrossRefGoogle Scholar
O’Brien, N.R., 1971 Fabric of kaolinite and illite floccules Clays and Clay Minerals 19 353359.CrossRefGoogle Scholar
Phillips, M.W. Colville, A.A. and Ribbe, P.H., 1971 The crystal structures of two oligoclases: a comparison with low and high albite Zeitschrift für Kristallographie 133 4365.CrossRefGoogle Scholar
Rieder, M. Crelling, J.C. Sustai, O. Drabek, M. Weiss, Z. and Klementova, M., 2007 Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic International Journal of Coal Geology 71 115121.CrossRefGoogle Scholar
Rietveld, H.M., 1969 A profile refinement method for nuclear and magnetic structures Journal of Applied Crystallography 2 6571.CrossRefGoogle Scholar
Ross, N.L. and Reeder, R.J., 1992 High-pressure structural study of dolomite and ankerite American Mineralogist 77 412421.Google Scholar
Rudolph, M.L. and Manga, M., 2010 Mud volcano response to the 4 April 2010 El Mayor-Cucapah earthquake Journal of Geophysical Research: Solid Earth 115 B12211 114.CrossRefGoogle Scholar
Ruud, B.O. Jakobsen, M. and Johansen, T.A., 2003 Seismic properties of shales during compaction 73rd SEG Meeting, Expanded abstracts, Dallas, Texas 12941297.CrossRefGoogle Scholar
Schneider, C.A. Rasband, W.S. and Eliceiri, K. W., 2012 NIH Image to ImageJ: 25 years of image analysis Nature Methods 9 7 671675.CrossRefGoogle ScholarPubMed
Sintubin, M., 1994 Clay fabrics in relation to the burial history of shales Sedimentology 41 11611169.CrossRefGoogle Scholar
Sturz, A., 1989 Low-temperature hydrothermal alteration in near-surface sediments, Salton Sea geothermal area Journal of Geophysical Research: Solid Earth 94 B4 40154024.CrossRefGoogle Scholar
Tseng, H.-Y. Heanet, P.J. and Onstott, T.C., 1995 Characterization of lattice strain induced by neutron irradiation Physics and Chemistry of Minerals 22 399405.CrossRefGoogle Scholar
Ufer, K. Roth, G. Kleeberg, R. Stanjek, H. Dohrmann, R. and Bergmann, J., 2004 Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach Zeitschrift für Kristallographie 219 519527.CrossRefGoogle Scholar
Vasin, R. Wenk, H.-R. Kanitpanyacharoen, W. Matthies, S. and Wirth, R., 2013 Elastic anisotropy modeling of Kimmeridge Shale Journal of Geophysical Research 118 39313956.CrossRefGoogle Scholar
Voltolini, M. Wenk, H.-R. Mondol, N.H. Bjørlykke, K. and Jahren, J., 2009 Anisotropy of experimentally compressed kaolinite-illite-quartz mixtures Geophysics 74 D13D23.CrossRefGoogle Scholar
Wenk, H.-R. Matthies, S. Donovan, J. and Chateigner, D., 1998 BEARTEX: a Windows-based program system for quantitative texture analysis Journal of Applied Crystallography 31 262269.CrossRefGoogle Scholar
Wenk, H.-R. Lonardelli, I. Franz, H. Nihei, K. and Nakagawa, S., 2007 Texture analysis and elastic anisotropy of illite clay Geophysics 72 E6975.CrossRefGoogle Scholar
Wenk, H.-R. Voltolini, M. Kern, H. Popp, H. and Mazurek, M., 2008 Anisotropy of Mont Terri Opalinus Clay The Leading Edge 27 742748.CrossRefGoogle Scholar
Wenk, H.-R. Kanitpanyacharoen, W. and Voltolini, M., 2010 Preferred orientation of phyllosilicates: comparison of fault gouge, shale and schist Journal of Structural Geology 32 478489.CrossRefGoogle Scholar
Wenk, H.-R. Lutterotti, L. Kaercher, P. Kanitpanyacharoen, W. Miyagi, L. and Vasin, R.N., 2014 Rietveld texture analysis from synchrotron diffraction images: II Complex multiphase materials and diamond anvil cell experiments. Powder Diffraction 29 172192.Google Scholar
Williamson, W.O., 1980 Experiments relevant to the genesis of clay mineral orientation in natural sediments Clay Minerals 15 9597.CrossRefGoogle Scholar
Zanazzi, P.F. Comodi, P. Nazzareni, S. and Andreozzi, G.B., 2009 Thermal behaviour of chlorite: an in situ single-crystal and powder diffraction study European Journal of Mineralogy 21 581589.CrossRefGoogle Scholar